• LeetCode(69):x 的平方根


    Easy!

    题目描述:

    实现 int sqrt(int x) 函数。

    计算并返回 x 的平方根,其中 是非负整数。

    由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。

    示例 1:

    输入: 4
    输出: 2
    

    示例 2:

    输入: 8
    输出: 2
    说明: 8 的平方根是 2.82842..., 
         由于返回类型是整数,小数部分将被舍去。

    解题思路:

    这道题要求平方根,我们能想到的方法就是算一个候选值的平方,然后和x比较大小,为了缩短查找时间,我们采用二分搜索法来找平方根,这里属于之前总结的LeetCode Binary Search Summary 二分搜索法小结(http://www.cnblogs.com/grandyang/p/6854825.html)中的第三类的变形,找最后一个不小于目标值的数,代码如下:

    C++解法一:

     1 class Solution {
     2 public:
     3     int mySqrt(int x) {
     4         if (x <= 1) return x;
     5         int left = 0, right = x;
     6         while (left < right) {
     7             int mid = left + (right - left) / 2;
     8             if (x / mid >= mid) left = mid + 1;
     9             else right = mid;
    10         }
    11         return right - 1;
    12     }
    13 };

    这道题还有另一种解法,是利用牛顿迭代法(https://zh.wikipedia.org/wiki/%E7%89%9B%E9%A1%BF%E6%B3%95),记得高数中好像讲到过这个方法,是用逼近法求方程根的神器,在这里也可以借用一下,可参见http://www.cnblogs.com/AnnieKim/archive/2013/04/18/3028607.html,因为要求x2 = n的解,令f(x)=x2-n,相当于求解f(x)=0的解,可以求出递推式如下:

    xi+1=xi - (xi- n) / (2xi) = xi - xi / 2 + n / (2xi) = xi / 2 + n / 2xi = (xi + n/xi) / 2

    C++解法二:

     1 class Solution {
     2 public:
     3     int mySqrt(int x) {
     4         if (x == 0) return 0;
     5         double res = 1, pre = 0;
     6         while (abs(res - pre) > 1e-6) {
     7             pre = res;
     8             res = (res + x / res) / 2;
     9         }
    10         return int(res);
    11     }
    12 };

    下面也是牛顿迭代法,写法更加简洁一些,注意为了防止越界,声明为长整型。

    C++解法三:

     1 class Solution {
     2 public:
     3     int mySqrt(int x) {
     4         long res = x;
     5         while (res * res > x) {
     6             res = (res + x / res) / 2;
     7         }
     8         return res;
     9     }
    10 };
  • 相关阅读:
    google浏览器高清壁纸保存
    vmworkstation安装unbuntu server 网络配置:NAT模式
    python量化交易相关资料
    Oracle VM VirtualBox启动后莫名奇妙的报错
    oracle RAC 跨网段客户端访问 报ORA-12170
    odoo开发 相关知识点
    C#.ToString()格式大全
    flex简单参考实例
    NPOI读写Excel
    C# Stream 和 byte[] 之间的转换(文件流的应用)
  • 原文地址:https://www.cnblogs.com/ariel-dreamland/p/9151609.html
Copyright © 2020-2023  润新知