• 用python做时间序列预测五:时间序列缺失值处理


    有的时候,一些时刻或连续时间段内的值无法采集到,或者本身就没有值,本文将介绍如何处理这种情况。

    一般而言,有以下几种方法:

    • 对所有的缺失值用零填充。
    • 前向填充:比如用周一的值填充缺失的周二的值
    • 后向填充:比如用周二的值填充缺失的周一的值
    • 采用n最近邻均值法填充:比如n取2,则用t-2,t-1,t+1,t+2时刻的平均值来填充缺失的t时刻的值。
    • 单线性插值:取某个缺失值的时间点,做一条垂线相较于左右时刻的值的连接线,得到的交点作为填充值。类似下图:

    对应的python代码实现:

    from sklearn.metrics import mean_squared_error
    df_orig = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'], index_col='date').head(100)
    df = pd.read_csv('datasets/a10_missings.csv', parse_dates=['date'], index_col='date')
    
    fig, axes = plt.subplots(7, 1, sharex=True, figsize=(10, 12))
    plt.rcParams.update({'xtick.bottom' : False})
    
    ## 1. Actual -------------------------------
    df_orig.plot(title='Actual', ax=axes[0], label='Actual', color='red', style=".-")
    df.plot(title='Actual', ax=axes[0], label='Actual', color='green', style=".-")
    axes[0].legend(["Missing Data", "Available Data"])
    
    ## 2. Forward Fill --------------------------
    df_ffill = df.ffill()
    error = np.round(mean_squared_error(df_orig['value'], df_ffill['value']), 2)
    df_ffill['value'].plot(title='Forward Fill (MSE: ' + str(error) +")", ax=axes[1], label='Forward Fill', style=".-")
    
    ## 3. Backward Fill -------------------------
    df_bfill = df.bfill()
    error = np.round(mean_squared_error(df_orig['value'], df_bfill['value']), 2)
    df_bfill['value'].plot(title="Backward Fill (MSE: " + str(error) +")", ax=axes[2], label='Back Fill', color='firebrick', style=".-")
    
    ## 4. Linear Interpolation ------------------
    df['rownum'] = np.arange(df.shape[0])
    df_nona = df.dropna(subset = ['value'])
    f = interp1d(df_nona['rownum'], df_nona['value'])
    df['linear_fill'] = f(df['rownum'])
    error = np.round(mean_squared_error(df_orig['value'], df['linear_fill']), 2)
    df['linear_fill'].plot(title="Linear Fill (MSE: " + str(error) +")", ax=axes[3], label='Cubic Fill', color='brown', style=".-")
    
    ## 5. Mean of 'n' Nearest Past Neighbors ------def knn_mean(ts, n):
        out = np.copy(ts)
        for i, val in enumerate(ts):
            if np.isnan(val):
                n_by_2 = np.ceil(n/2)
                lower = np.max([0, int(i-n_by_2)])
                upper = np.min([len(ts)+1, int(i+n_by_2)])
                ts_near = np.concatenate([ts[lower:i], ts[i:upper]])
                out[i] = np.nanmean(ts_near)
        return out
    
    df['knn_mean'] = knn_mean(df.value.values, 8)
    error = np.round(mean_squared_error(df_orig['value'], df['knn_mean']), 2)
    df['knn_mean'].plot(title="KNN Mean (MSE: " + str(error) +")", ax=axes[5], label='KNN Mean', color='tomato', alpha=0.5, style=".-")
    

    ok,本篇就这么多内容啦~,感谢阅读O(∩_∩)O。

  • 相关阅读:
    投资银行的IT部门——不同之处与常见误解
    C++ error C2440: “类型转换” : 无法从“std::vector::iterator”转换为“
    查看端口占用
    Sc config http start= disabled
    DDL、DML和DCL的区别与理解
    不同网段,在路由器上如何设置网关
    服务器调优
    查看SQL Server版本信息
    基于32位Windows2003的数据库服务器优化,启用AWE,优化SQL Server
    在WIN7操作系统下,如何显示文件夹里文件的数目
  • 原文地址:https://www.cnblogs.com/anai/p/13068058.html
Copyright © 2020-2023  润新知