数据聚类data clustering:用来寻找紧密相关的事物,并将其可视化的方法。
1. 聚类时常被用于数据量很大(data-intensive)的应用中。
2. 聚类是无监督学习(unsupervised learning)的一个例子。无监督学习算法并不利用带有正确答案的样本数据进行“训练”,它们的目的是要在一组数据中找寻某种结构,而这些数据本身并不是我们要找的答案。
3. 聚类的结果不会告诉零售商每位顾客可能会买什么,也不会预测新来的顾客适合哪种时尚,聚类算法的目标是采集数据,然后从中找出不同的数组。
例如:可以通过聚类来对博客用户进行分类
这个说法的假设前提是:我们有众多的博客用户,但这些用户并没有显著的特征标签,在这种情况下,如何有效的对这些用户进行分类。这时候聚类就派上用场了。
基本过程:
1. 构建一个博客订阅源列表
2. 利用订阅源列表建立一个单词列表,将其实际用于针对每个博客的单词计数。
3.
我们利用上述单词列表和博客列表来建立一个文本文件,其中包含一个大的矩阵,记录者针对每个博客的所有单词的统计情况。(例如:可以用列对应单词,用行对应博客),一个可用的代码如下:
[python] view plain copy
4.
当然这里有很多可以减少需要统计的单词量的技巧,有些常用的习惯性用于可以从这些列表中删除掉。具体的构建过程这里省略不谈,感兴趣的可以参考相关书籍。
5. 进行聚类:这里有两种可用的方法
分级聚类:
分级聚类通过连续不断地将最为相似的群组两两合并,直到只剩一个群组为止,来构造出一个群组的层级结构。其过程可以参考下图:
图:分级聚类的过程
分级聚类基本算法如下:(这里省略了一些细节函数,如加载文件,计算皮尔逊相似度等)
[python] view plain copy