import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot = True) # # add layer # def add_layer(inputs, in_size, out_size, activation_function = None): Weights = tf.Variable(tf.random_normal([in_size, out_size])) # hang lie biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs def compute_accuracy(v_xs, v_ys): global prediction y_pre = sess.run(prediction, feed_dict={xs:v_xs}) correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(v_ys, 1))#返回最大值的索引号 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) result = sess.run(accuracy, feed_dict={xs:v_xs, ys:v_ys}) return result # # define placeholder for inputs to network # xs = tf.placeholder(tf.float32, [None, 784]) # 28x28, 784 dimention / sample ys = tf.placeholder(tf.float32, [None, 10]) # # add output layer # prediction = add_layer(xs, 784, 10, activation_function = tf.nn.softmax) # # the error between prediction and real data # cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), reduction_indices=[1])) #loss train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.Session() sess.run(tf.global_variables_initializer()) for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={xs:batch_xs, ys:batch_ys}) if i % 50 == 0: print(compute_accuracy( mnist.test.images, mnist.test.labels))
解释 compute_accuracy 的计算原理:
来自:https://blog.csdn.net/cy_tec/article/details/52046806