• 莫烦TensorFlow_09 MNIST例子


    import tensorflow as tf  
    from tensorflow.examples.tutorials.mnist import input_data
    
    mnist = input_data.read_data_sets('MNIST_data', one_hot = True)
    
     #
     # add layer
     #
    def add_layer(inputs, in_size, out_size, activation_function = None):  
      
        Weights = tf.Variable(tf.random_normal([in_size, out_size]))  # hang lie  
        biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)  
        Wx_plus_b = tf.matmul(inputs, Weights) + biases  
        
        if activation_function is None:  
          outputs = Wx_plus_b  
        else:  
          outputs = activation_function(Wx_plus_b)  
          
        return outputs  
    
    
    def compute_accuracy(v_xs, v_ys):
      global prediction
      y_pre = sess.run(prediction, feed_dict={xs:v_xs})
      correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(v_ys, 1))#返回最大值的索引号
      accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
      result = sess.run(accuracy, feed_dict={xs:v_xs, ys:v_ys})
      return result
      
    
    
    #
    # define placeholder for inputs to network
    #
    xs = tf.placeholder(tf.float32, [None, 784]) # 28x28, 784 dimention / sample
    ys = tf.placeholder(tf.float32, [None, 10])
    
    #
    # add output layer
    #
    prediction = add_layer(xs, 784, 10, activation_function = tf.nn.softmax)
    
    
    
    
    #
    # the error between prediction and real data
    #
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
    					      reduction_indices=[1])) #loss
    train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
    
    
    
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    
    for i in range(1000):
      batch_xs, batch_ys = mnist.train.next_batch(100)
      sess.run(train_step, feed_dict={xs:batch_xs, ys:batch_ys})
      if i % 50 == 0:
        print(compute_accuracy(
          mnist.test.images, mnist.test.labels))
        
    

      

    解释 compute_accuracy 的计算原理:

    来自:https://blog.csdn.net/cy_tec/article/details/52046806

  • 相关阅读:
    css3 flex 布局
    用CSS3 & jQuery创建apple TV海报视差效果
    JavaScript知识点的总结
    javascript 常用DOM操作整理
    html打造动画【系列4】哆啦A梦
    如何掌握jQuery插件开发(高能)
    前端基础进阶(一):内存空间详细图解
    JavaScript中数组对象详解
    [zhuan]JNIEnv解析
    在 C Level 用 dlopen 使用 第三方的 Shared Library (.so)
  • 原文地址:https://www.cnblogs.com/alexYuin/p/8684251.html
Copyright © 2020-2023  润新知