Description
Given two integer sequences {ai} and {bi} with the same length n, you are to find the next n numbers of {ai}: an+1…a2nan+1…a2n. Just like always, there are some restrictions on an+1…a2nan+1…a2n: for each number aiai, you must choose a number bkbk from {bi}, and it must satisfy aiai≤max{ajaj-j│bkbk≤j<i}, and any bkbk can’t be chosen more than once. Apparently, there are a great many possibilities, so you are required to find max{∑2nn+1ai∑n+12nai} modulo 109109+7 .
Now Steph finds it too hard to solve the problem, please help him.
Input
For each test case, the first line consists of one integer n. The next line consists of n integers representing {ai}. And the third line consists of n integers representing {bi}.
1≤n≤250000, n≤a_i≤1500000, 1≤b_i≤n.
Output
Sample Input 4 8 11 8 5 3 1 4 2 Sample Output 27
数列要满足aj <= max{ai - i},其中bk <= j < i,bk是数列b中的一项,且每个bk最多仅能取一次
看到这里肯定还看不明白。
具体说一下第一个样例:
a数组是8 11 8 5 b数组是3 1 4 2
现在要扩充a数组,然后数组的扩充方法是,a数组中每个数等于本身减去他的下标,然后从b数组中选一个数,然后a数组的这个数的位置开始到最后选一个最大的(只能解释到这样了)。
实现:a数组相当于 (8-1)(11-2)(8-3)(5-4)
从b数组中选择1,代表从a[1]到a[4]中选择一个最大的,选择9。然后将9添加到a数组中,然后数组为(8-1)(11-2)(8-3)(5-4) (9-5)
然后第二次从b数组中选择2代表从a[2]到a[5]中选择一个最大的,选择9。然后将9添加到a数组中,然后数组为(8-1)(11-2)(8-3)(5-4) (9-5)(9-6)
然后第三次从b数组中选择3代表从a[3]到a[6]中选择一个最大的,选择5。然后将5添加到a数组中,然后数组为(8-1)(11-2)(8-3)(5-4) (9-5)(9-6)(5-7)
然后第四次从b数组中选择4代表从a[4]到a[7]中选择一个最大的,选择4。然后将9添加到a数组中,然后数组为(8-1)(11-2)(8-3)(5-4) (9-5)(9-6)(5-7)(4-8)
然后更新完成了。最后数列a的n+1到2*n项的值为9+9+5+4=27
思路:
要想使数列a的n+1到2*a项最大,又每项都要减去i
所以应该尽量使bk最小,从最前面开始(可以理解为贪心)
那么肯定要先把最大的放进来
将b排序,计算ai - i的值
开一个max数组记录从i 到最后一项的最大ai-i的值(可以从后往前找)
每次加入点的时候,从后往前比较,如果小于这个数,就更新为这个数。
用一个sum记录总和。
记得每次加的结果要%mod。
注意数组要开为数据量的两倍,因为a数组要扩展!
代码:
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> int mod=1e9+7; using namespace std; int a[500010],b[500010],maxx[500010]; int main() { int n; while(~scanf("%d",&n)) { memset(maxx,0,sizeof(maxx)); for(int i=1; i<=n; i++) { scanf("%d",a+i); a[i]-=i; } for(int i=1; i<=n; i++) { scanf("%d",b+i); } sort(b+1,b+n+1); maxx[n]=a[n]; for(int i=n; i>=2; i--)//更新max数组 { maxx[i-1]=max(a[i-1],maxx[i]); } int flag=n+1; int sum=0; for(int i=1; i<=n; i++) { sum+=maxx[b[i]];//选择最大的数 a[flag]=maxx[b[i]]-(flag); maxx[flag]=a[flag]; for(int j=flag-1; j>=1; j--)//加入新的点之后,要更新对应的max { if(maxx[j]<maxx[flag]) maxx[j]=maxx[flag]; else break; } flag++; sum=sum%mod; } printf("%d ",sum); } }