# def max_pool2d(inputs, # kernel_size, # stride=2, # padding='VALID', # data_format=DATA_FORMAT_NHWC, # outputs_collections=None, # scope=None): #"VALID"模式下 #输出图像大小 out_height = round((in_height - floor(filter_height / 2) * 2) / strides_height) floor表示下取整 round表示四舍五入 input = tf.Variable(tf.round(10 * tf.random_normal([1, 7, 7, 1]))) #filter = tf.Variable(tf.round(5 * tf.random_normal([3, 3, 1, 1]))) #op2 = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID') slim_max_pool2d = slim.max_pool2d(input, [3, 3], [1, 1], scope='pool1') #slim_conv2d_SAME = slim.conv2d(input, 1, [3, 3], [1, 1], weights_initializer=tf.ones_initializer, padding='SAME') with tf.Session() as sess: sess.run(tf.global_variables_initializer()) slim_max_pool2d_value = sess.run(slim_max_pool2d) print(slim_max_pool2d_value.shape)