• A*寻路算法 python实现


    # -*- coding: utf-8 -*-
    
    import math
    import cv2 as cv
    
    
    class Point(object):
        def __init__(self, position, parent):
            self.position = position
            self.parent = parent
            self.F = 0
            self.G = 0
            self.H = 0
    
    
    # 全局阈值
    def threshold_demo(image):
        gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY)  # 把输入图像灰度化
        # 直接阈值化是对输入的单通道矩阵逐像素进行阈值分割。
        ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_TRIANGLE)
        # print("threshold value %s" % ret)
        # cv.imshow("binary0", binary)
        return binary
    
    
    src = cv.imread('C:/tensor/map.jpg')
    # cv.imshow('input_image', src)
    bi = threshold_demo(src)
    
    
    def estimate_distance(from_point, target_point):
        return math.sqrt(math.pow(target_point.position[0] - from_point.position[0], 2) + math.pow(
            target_point.position[1] - from_point.position[1], 2))
    
    
    def is_same_node(point, target_point):
        if point.position[0] == target_point.position[0] and point.position[1] == target_point.position[1]:
            return True
        return False
    
    
    def is_point_in_list(point, p_list):
        for p in p_list:
            if is_same_node(p, point):
                return True
        return False
    
    
    def get_point_from_list(point, p_list):
        for p in p_list:
            if is_same_node(p, point):
                return p
        return None
    
    
    def display_path(last_point):
        point_path = [last_point]
        last_point = last_point.parent
        while last_point is not None:
            point_path.append(last_point)
            last_point = last_point.parent
    
        point_path.reverse()
        path_str = ''
        for p in point_path:
            path_str += '[' + str(p.position[0]) + ',' + str(p.position[1]) + ']-->'
        print(path_str)
    
        image = src
        for point in point_path:
            cv.circle(image, (point.position[1], point.position[0]), 1, (0, 0, 255), 1)
        image = cv.resize(image, (bi.shape[1]*4, bi.shape[0]*4))
        cv.imshow("final", image)
    
    
    def filter_not_reachables(map, points):
        new_points = []
    
        for point in points:
            if map[point.position[0]][point.position[1]] == 255:
                new_points.append(point)
    
        return new_points
    
    
    def get_periphery_points(map, point):
        points = []
    
        x = point.position[0]
        y = point.position[1]
    
        points.append(Point([x - 1, y - 1], None))
        points.append(Point([x, y - 1], None))
        points.append(Point([x + 1, y - 1], None))
    
        points.append(Point([x - 1, y], None))
        points.append(Point([x + 1, y], None))
    
        points.append(Point([x - 1, y + 1], None))
        points.append(Point([x, y + 1], None))
        points.append(Point([x + 1, y + 1], None))
    
        valid_points = []
    
        for p in points:
            if 0 <= p.position[0] < map.shape[0] and 0 <= p.position[1] < map.shape[1]:
                valid_points.append(p)
    
        return valid_points
    
    
    def pick_one_min_F_point(p_list):
        if len(p_list) == 0:
            return None
    
        if len(p_list) == 1:
            return p_list[0]
    
        min_F = p_list[0].F
        min_idx = 0
    
        for idx, p in enumerate(p_list[1:]):
            if p.F < min_F:
                min_F = p.F
                min_idx = idx + 1
    
        return p_list[min_idx]
    
    
    def filter_ignored(points):
        new_points = []
    
        if len(points) <= 0:
            return new_points
    
        for p in points:
            if p.ignore:
                continue
            new_points.append(p)
    
        return new_points
    
    
    def a_star(map):
        width, height = map.shape
        print(' ', width, 'height: ', height)
        print(width * height)
    
        target_point = Point([width - 1, height - 1], None)
    
        from_point = Point([0, 0], None)
        from_point.G = 0
        from_point.H = estimate_distance(from_point, target_point)
        from_point.F = from_point.G + from_point.H
    
        open_list = []
        close_list = []
        open_list.append(from_point)
    
        while len(open_list) > 0:
            cur_point = pick_one_min_F_point(open_list)
            if cur_point is None:
                raise ValueError('无法找到可达路径')
    
            points = get_periphery_points(map, cur_point)
            points = filter_not_reachables(map, points)
    
            for point in points:
                if is_point_in_list(point, open_list):
                    point.new_added = False
                    point.ignore = False
                    p = get_point_from_list(point, open_list)
                    point.parent = p.parent
                    point.F = p.F
                    point.G = p.G
                    point.H = p.H
                elif is_point_in_list(point, close_list):
                    point.new_added = False
                    point.ignore = True
                    p = get_point_from_list(point, close_list)
                    point.parent = p.parent
                    point.F = p.F
                    point.G = p.G
                    point.H = p.H
                else:
                    point.new_added = True
                    point.ignore = False
                    open_list.append(point)
    
            points = filter_ignored(points)
    
            for point in points:
                if point.new_added:
                    point.parent = cur_point
                    # 计算FGH
                    point.G = cur_point.G + 1
                    point.H = estimate_distance(point, target_point)
                    point.F = point.G + point.H
                else:
                    # 计算FGH
                    old_f = point.G + point.H
                    new_f = cur_point.G + 1 + point.H
    
                    # 比较新的和老的F值哪个大
                    if new_f < old_f:
                        # 覆盖新的FGH/PARENT
                        point.parent = cur_point
                        point.G = cur_point.G + 1
                        point.F = point.G + point.H
    
            for point in points:
                if is_same_node(point, target_point):
                    display_path(point)
                    return
    
            open_list.remove(cur_point)
            close_list.append(cur_point)
    
    
    a_star(bi)
    
    cv.waitKey(0)
    cv.destroyAllWindows()
    

     

  • 相关阅读:
    跟老婆学习软件工程一:瀑布模型
    我的手机需求
    我的BB8820手机
    WordPress中query_posts函数和WPpagenavi插件冲突的解决方法
    HomeZZ注册推介码
    分享:世界机场代码(ICAO)[带经纬度]
    Silverlight学习笔记十七BingMap(三)之地图的地区标识
    从真正的项目中学习Silverlight(MSN Entertainment项目源码下载)
    Silverlight的十几种图片展示炫酷效果(附源码)
    Silverlight水的微波凌步效果
  • 原文地址:https://www.cnblogs.com/aarond/p/a-star.html
Copyright © 2020-2023  润新知