• TensorFlow+restore读取模型


    # 注意和前一或二篇Lenet训练并验证的文章从`y_conv = tf.nn.softmax(fc2)`起的不同
    # 部分函数请参照前后2篇文章
    import tensorflow as tf
    import tfrecords2array
    import numpy as np
    from keras.utils import to_categorical
    import matplotlib.pyplot as plt
    import cv2
    from collections import OrderedDict
    
    
    def lenet(char_classes):
    
        # characters_reference
        recall_rate = OrderedDict().fromkeys([
            '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
            'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
            'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't',
            'u', 'v', 'w', 'x', 'y', 'z',
            '藏', '川', '鄂', '甘', '赣', '广', '桂', '贵', '黑',
            '沪', '吉', '冀', '津', '晋', '京', '辽', '鲁', '蒙',
            '闽', '宁', '青', '琼', '陕', '苏', '皖', '湘', '新',
            '渝', '豫', '粤', '云', '浙'
            ])
        for i in recall_rate.keys():
            recall_rate[i] = 1
        class_count = recall_rate.copy()
        # y_train = []
        # x_train = []
        y_test = []
        x_test = []
        for char_class in char_classes:
            # train_data = tfrecords2array.tfrecord2array(
            #     r"./data_tfrecords/" + char_class + "_tfrecords/train.tfrecords")
            test_data = tfrecords2array.tfrecord2array(
                r"./data_tfrecords/" + char_class + "_tfrecords/test.tfrecords")
            # y_train.append(train_data[0])
            # x_train.append(train_data[1])
            y_test.append(test_data[0])
            x_test.append(test_data[1])
        for i in [y_test, x_test]:      # y_train, x_train, 
            for j in i:
                print(j.shape)
        # y_train = np.vstack(y_train)
        # x_train = np.vstack(x_train)
        y_test = np.vstack(y_test)
        x_test = np.vstack(x_test)
    
        class_num = y_test.shape[-1]
    
        # print("x_train.shape=" + str(x_train.shape))
        print("x_test.shape=" + str(x_test.shape))
        sess = tf.InteractiveSession()
    
        x = tf.placeholder("float", shape=[None, 784])
        y_ = tf.placeholder("float", shape=[None, class_num])
        # 把x更改为4维张量,第1维代表样本数量,第2维和第3维代表图像长宽, 第4维代表图像通道数, 1表示黑白
        x_image = tf.reshape(x, [-1, 28, 28, 1])
    
        # 第一层:卷积层
        conv1_weights = tf.get_variable(
            "conv1_weights",
            [5, 5, 1, 32],
            initializer=tf.truncated_normal_initializer(stddev=0.1))
        # 过滤器大小为5*5, 当前层深度为1, 过滤器的深度为32
        conv1_biases = tf.get_variable("conv1_biases", [32],
                                       initializer=tf.constant_initializer(0.0))
        conv1 = tf.nn.conv2d(x_image, conv1_weights, strides=[1, 1, 1, 1],
                             padding='SAME')
    
        relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))     # 激活函数Relu去线性化
    
    
        pool1 = tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
                               padding='SAME')
    
    
        conv2_weights = tf.get_variable(
            "conv2_weights",
            [5, 5, 32, 64],
            initializer=tf.truncated_normal_initializer(stddev=0.1))
    
        conv2_biases = tf.get_variable(
            "conv2_biases", [64], initializer=tf.constant_initializer(0.0))
        conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1],
                             padding='SAME')
    
        relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))
    
    
        pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
                               padding='SAME')
    
    
        fc1_weights = tf.get_variable("fc1_weights", [7 * 7 * 64, 1024],
                                      initializer=tf.truncated_normal_initializer(
                                      stddev=0.1))
    
        fc1_biases = tf.get_variable(
            "fc1_biases", [1024], initializer=tf.constant_initializer(0.1))
        pool2_vector = tf.reshape(pool2, [-1, 7 * 7 * 64])
        fc1 = tf.nn.relu(tf.matmul(pool2_vector, fc1_weights) + fc1_biases)
    
        # dropout
        keep_prob = tf.placeholder(tf.float32)
        fc1_dropout = tf.nn.dropout(fc1, keep_prob)
    
    
        fc2_weights = tf.get_variable("fc2_weights", [1024, class_num],
                                      initializer=tf.truncated_normal_initializer(
                                      stddev=0.1))
    
        fc2_biases = tf.get_variable(
            "fc2_biases", [class_num], initializer=tf.constant_initializer(0.1))
        fc2 = tf.matmul(fc1_dropout, fc2_weights) + fc2_biases
    
        # softmax
        y_conv = tf.nn.softmax(fc2)
        pred_class_index = tf.argmax(y_conv, 1)
    
        # tf.argmax()返回的是某一维度上其数据最大所在的索引值,在这里即代表预测值和真实值
        # 判断预测值y和真实值y_中最大数的索引是否一致,y的值为1-class_num概率
        correct_prediction = tf.equal(pred_class_index, tf.argmax(y_, 1))
    
        # 用平均值来统计测试准确率
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
        # 开始训练
        saver = tf.train.Saver()
        # sess.run(tf.global_variables_initializer())
        saver.restore(sess, './my_model/model.ckpt')
        # pred_value = sess.run([pred_class_index], feed_dict={
        #     x: x_test, y_: y_test, keep_prob: 1.0
        # })
        # print("pred_value=" + str(pred_value))
        # acc_test = sess.run(accuracy, feed_dict={
        #     x: x_test, y_: y_test, keep_prob: 1.0
        # })
        #
        batch_size_test = 64
        epoch_test = y_test.shape[0] // batch_size_test + 1
        acc_test = 0
        class_sums = []
        for i in range(epoch_test):
            if (i*batch_size_test % x_test.shape[0]) > (((i+1)*batch_size_test) %
                                                        x_test.shape[0]):
                x_data_test = np.vstack((
                    x_test[i*batch_size_test % x_test.shape[0]:],
                    x_test[:(i+1)*batch_size_test % x_test.shape[0]]))
                y_data_test = np.vstack((
                    y_test[i*batch_size_test % y_test.shape[0]:],
                    y_test[:(i+1)*batch_size_test % y_test.shape[0]]))
            else:
                x_data_test = x_test[
                    i*batch_size_test % x_test.shape[0]:
                    (i+1)*batch_size_test % x_test.shape[0]]
                y_data_test = y_test[
                    i*batch_size_test % y_test.shape[0]:
                    (i+1)*batch_size_test % y_test.shape[0]]
            # plt.imshow(x_data_test[0].reshape(28, 28), cmap="gray")
            # plt.show()
            # Calculate batch loss and accuracy
            pred_value = to_categorical(np.squeeze(
                sess.run([pred_class_index], feed_dict={
                       x: x_data_test, y_: y_data_test, keep_prob: 1.0})), 68)
            # print("{}-th pred_value={}".format(i, pred_value))
            # print("{}-th y_data_test={}".format(i, y_data_test))
            # print("
    Cover:")
            # print("pred_value:", pred_value)
            # print("y_data_test:", y_data_test)
            # input()
            recall_sum = np.sum(cv2.bitwise_and(pred_value, y_data_test), axis=0)
            class_sum = np.sum(y_data_test, axis=0)
            class_sums.append(class_sum)
            # print(recall_sum)
            # input()
            for idx in range(len(recall_sum)):
                recall_rate[str(list(recall_rate.keys())[idx])] += recall_sum[idx]
                class_count[str(list(class_count.keys())[idx])] += class_sum[idx]
            # print(recall_rate)
            c = accuracy.eval(feed_dict={
                x: x_data_test, y_: y_data_test, keep_prob: 1.0})
            acc_test += c / epoch_test
        for i in list(recall_rate.keys()):
            recall_rate[i] /= class_count[i]
        print("recall_rate:
    ", recall_rate)
        print("class_count:
    ", class_count)
        print("class_sums:", np.sum(np.array(class_sums), axis=0))
        print("Restored acc_test={}".format(acc_test))
        return recall_rate
    
    
    def main():
        # integers:         4679
        # alphabets:        9796
        # Chinese_letters:  3974
        # training_set : testing_set == 4 : 1
        train_lst = ['alphabets', 'integers']
        recall_rate = lenet(train_lst)
        recall_rate_values = recall_rate.values()
        _, ax = plt.subplots(1, 1, figsize=(12, 6))
        ax.plot(list(recall_rate_values), list(range(len(recall_rate_values))),
                '^')
        ax.hlines(list(range(len(recall_rate_values))), [0], recall_rate_values,
                  lw=2)
        ax.set_xlabel('Recall rate')
        ax.set_ylabel('Idx of elem')
        ax.set_title('Statistics on Recall Rates')
        plt.show()
    
    
    if __name__ == '__main__':
        main()
    
  • 相关阅读:
    一天搞懂深度学习--深度学习简介
    Ubuntu16.04下安装Hive
    Ubuntu16.04下安装Hadoop
    Hive入门学习--HIve简介
    循环神经网络(RNN)--学习笔记
    如何使用GitHub
    python pandas import 失败
    Azure ARM VM内部关机了,但门户却显示虚拟机还在处在“正在运行”的状态
    Exchange 2010 与 RMS(集成权限管理服务)集成
    统计 Exchange 2010 时间段收发邮件总量
  • 原文地址:https://www.cnblogs.com/ZhengPeng7/p/7942353.html
Copyright © 2020-2023  润新知