• [SDOI2010]地精部落


    题目描述

    传说很久以前,大地上居住着一种神秘的生物:地精。

    地精喜欢住在连绵不绝的山脉中。具体地说,一座长度为N的山脉H可分为从左到右的N段,每段有一个[b][u]独一无二[/u][/b]的高度Hi,其中Hi是1到N之间的正整数。

    如果一段山脉比所有与它相邻的山脉都高,则这段山脉是一个山峰。位于边缘的山脉只有一段相邻的山脉,其他都有两段(即左边和右边)。

    类似地,如果一段山脉比所有它相邻的山脉都低,则这段山脉是一个山谷。

    地精们有一个共同的爱好——饮酒,酒馆可以设立在山谷之中。地精的酒馆不论白天黑夜总是人声鼎沸,地精美酒的香味可以飘到方圆数里的地方。

    地精还是一种非常警觉的生物,他们在每座山峰上都可以设立瞭望台,并轮流担当瞭望工作,以确保在第一时间得知外敌的入侵。

    地精们希望这N段山脉每段都可以修建瞭望台或酒馆的其中之一,只有满足这个条件的整座山脉才可能有地精居住。

    现在你希望知道,长度为N的可能有地精居住的山脉有多少种。两座山脉A和B不同当且仅当存在一个i,使得Ai≠Bi。由于这个数目可能很大,你只对它除以P的余数感兴趣。

    输入输出格式

    输入格式:

    输入文件goblin.in仅含一行,两个正整数N, P。

    输出格式:

    输出文件goblin.out仅含一行,一个非负整数,表示你所求的答案对P取余之后的结果。

    输入输出样例

    输入样例#1:
    4 7
    输出样例#1:
    3

    说明

    说明:共有10种可能的山脉,它们是:

    1[u]3[/u]2[u]4[/u] 1[u]4[/u]2[u]3[/u] [u]2[/u]1[u]4[/u]3 2[u]3[/u]1[u]4[/u] 2[u]4[/u]1[u]3[/u]

    [u]3[/u]1[u]4[/u]2 [u]3[/u]2[u]4[/u]1 3[u]4[/u]1[u]2[/u] [u]4[/u]1[u]3[/u]2 [u]4[/u]2[u]3[/u]1

    其中加下划线的数位表示可以设立瞭望台的山峰,其他表示可以设立酒馆的山谷。

    【数据规模和约定】

    对于20%的数据,满足N≤10;

    对于40%的数据,满足N≤18;

    对于70%的数据,满足N≤550;

    对于100%的数据,满足3≤N≤4200,P≤109。

    求波动序列的个数

    首先,了解波动序列的对称性

    序列如果为 1 4 2 5 3

    对称序列为 5 2 4 1 3

    如果原序列开始递减,那么同n+1减每个数,就变成了递减序列的对称递增序列

    所以我们只需要求递增序列,乘2就是总个数

    设 f [i] [j] 为 排列 [ 1 , i ] 中开头为 j 的且第一段上升的方案数

    这个方案数可以递推而来

    根据引理,

    如果j 和 j-1 不相邻 , 把抖动序列中的 j 和 j-1 交换仍然得到一个抖动序列,而且是一一对应的

    或者j 和 j-1 相邻 ,这部分方案数来自于 f [ i-1 , i-j+1]

    去掉 j ,则区间变为[1,j-1]并[j+1,i]

    把[j+1,i]下移一位,则变为[1,i-1],那么只要再求出这部分第一段下降的方案数即可

    根据 引理3, 求出f[i-1][(i-1)-(j-1)+1]加上即可

    最后*2

    是因为我们求的是第一部分为上升的

    下降只需引理3一遍就可以

    则方程 f[i][j]=f[i][j-1]+f[i-1][i-j+1];

    再给出一种更易懂的方法:

    f[i][0/1]i表示最高位的数字,0表示开始是上升,1表示开始是下降。

    为什么会推出这个?

    1、因为所谓抖动序列和每个数的具体值没有关系,只与它的大小有关系,

    2、在下一个循环中,枚举开头数字,所以只和上一种情况的最高位有关,在数位依次递增的时候循环开头的每个情况即可。

    例: 若为1、 2、 3、 4、 5:

    开始是2, 后面是1、 3、 4、 5,分别对应4个数时的1 、2、 3、 4;

    转移条件即为上一次递推 <2 上升 作为最高位为 2 的下降方案数

    上一次递推 >=2 下降 作为最高位为 2 的上升方案数

    在搞上前缀和+后缀和优化,减掉一维 就可以n^2出解

     1 #include<iostream>
     2 #include<algorithm>
     3 #include<cstring>
     4 #include<cstdio>
     5 using namespace std;
     6 long long ans,f[2][5001];
     7 int n,Mod;
     8 int main()
     9 {int now,nxt,i,j;
    10     cin>>n>>Mod;
    11     now=0;nxt=1;
    12     f[0][1]=1;
    13      for (i=2;i<=n;i++)
    14      {
    15          for (j=1;j<=i;j++)
    16          f[nxt][j]=(f[nxt][j-1]+f[now][i-j+1])%Mod;
    17         swap(nxt,now);
    18      }
    19      for  (i=1;i<=n;i++)
    20      {
    21          ans=(ans+f[now][i])%Mod;
    22      }
    23     cout<<(ans*2)%Mod;
    24 }
  • 相关阅读:
    sujection重构
    serialize存入数组
    migration integer limit option
    FineReport——FS
    Oracle事务处理
    FineReport——发送邮件
    FineReport——登录不到决策系统
    FineReport——JS二次开发(复选框全选)
    FineReport——JS二次开发(局部刷新)
    FineReport——JS二次开发(工具栏按钮事件及说明)
  • 原文地址:https://www.cnblogs.com/Y-E-T-I/p/7308311.html
Copyright © 2020-2023  润新知