题目链接:BZOJ,[洛谷](https://www.luogu.org/problemnew/show/P47740)
对于每条龙,我们可以算出攻击次数(x_i),满足方程(x_iequiv Z_i(\%R_i)),(R_i=dfrac{p_i}{gcd(p_i,ATK_i)}),(Z_i)则为首次将巨龙杀死的攻击次数((Z_i)可能大于(R_i),但是不能(\%)掉)
然后我们就可以用ex_crt将所有方程合并起来
最后求出的解(X)可能(<maxlimits_{i=1}^m{Z_i}),那么我们就把(X)不断加(lcm(R_1,R_2,...R_m)),直到满足即可
/*program from Wolfycz*/
#include<set>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
typedef long long ll;
typedef long double ld;
typedef unsigned int ui;
typedef std::multiset<ll> msi;
typedef unsigned long long ull;
inline char gc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
template<typename T>inline T frd(T x){
int f=1; char ch=gc();
for (;ch<'0'||ch>'9';ch=gc()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
template<typename T>inline T read(T x){
int f=1;char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline void print(int x){
if (x<0) putchar('-'),x=-x;
if (x>9) print(x/10);
putchar(x%10+'0');
}
template<typename T>inline T min(T x,T y){return x<y?x:y;}
template<typename T>inline T max(T x,T y){return x>y?x:y;}
template<typename T>inline T swap(T &x,T &y){T t=x; x=y,y=t;}
const int N=1e5;
namespace Math{
ll mul(ll _a,ll _b,ll _p){
ll _c=(ld)_a*_b/_p+0.5;
ll _ans=_a*_b-_c*_p;
if (_ans<0) _ans+=_p;
return _ans;
}
ll gcd(ll a,ll b){return !b?a:gcd(b,a%b);}
void exgcd(ll a,ll b,ll &x,ll &y){
if (!b){x=1,y=0;return;}
exgcd(b,a%b,x,y);
ll t=x; x=y,y=t-a/b*y;
}
ll Ex_GCD(ll a,ll b,ll c){
ll d=gcd(a,b),x,y;
if (c%d) return -1;
a/=d,b/=d,c/=d;
exgcd(a,b,x,y);
x=(mul(x,c,b)+b)%b;
if ((c-a*x)/b>0) x+=b;
return x;
}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
}
msi Sw;//Sword
ll h[N+10],Z[N+10],p[N+10],R[N+10];
int V[N+10];
// x = Zi ( % Ri )
using namespace Math;
int main(){
for (int T=read(0);T;T--){
Sw.clear();
int n=read(0),m=read(0); ll Max=0;
for (int i=1;i<=n;i++) h[i]=read(0ll);
for (int i=1;i<=n;i++) p[i]=read(0ll);
for (int i=1;i<=n;i++) V[i]=read(0);
for (int i=1;i<=m;i++) Sw.insert(read(0));
bool Wrong=0;
for (int i=1;i<=n;i++){
msi::iterator it=Sw.upper_bound(h[i]);
if (it!=Sw.begin()) it--;
Z[i]=h[i]/(*it),h[i]%=*it;
ll tmp=Ex_GCD(*it,p[i],h[i]);
if (tmp==-1){Wrong=1;break;}
Z[i]+=tmp,R[i]=p[i]/Math::gcd(*it,p[i]);
Sw.erase(it),Sw.insert(V[i]);
Max=max(Max,Z[i]);
}
if (Wrong){
printf("-1
");
continue;
}
ll Z1=Z[1],R1=R[1];
for (int i=2;i<=n;i++){
ll tmp=Ex_GCD(R1,R[i],Z[i]-Z1);
if (tmp==-1){
Wrong=1;
break;
}
ll Lcm=lcm(R1,R[i]);
Z1=(Z1+mul(tmp,R1,Lcm))%Lcm,R1=Lcm;
}
if (Wrong){
printf("-1
");
continue;
}
ll Ans=Ex_GCD(1,R1,Z1);
if (Ans<Max) Ans+=R1*((Max-Ans-1)/R1+1);
printf("%lld
",Ans);
}
return 0;
}