题目:传送门
题意:有 n 棵树,第 i 棵树位于点 (xi, yi),有 vi 的价值, Li 的长度,现在你需要建一个篱笆,把所有树围起来,你只能通过砍掉其中的一些树来获得建篱笆的材料。现在问你能顺利建成篱笆需要砍掉的树的价值最小是多少,如果有多种价值一样小的方案,输出砍掉的树数目最少的情况。
2 <= n <= 15
思路:n很小,可以直接暴力枚举所有状态,如果二进制位上是1,代表砍掉这颗树。然后,剩下的树,要建篱笆将它们包围起来,且篱笆的周长要尽可能小,那就是求凸包周长了。
#include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> #include <queue> #include <map> #include <vector> #include <set> #include <string> #include <math.h> #define LL long long #define mem(i, j) memset(i, j, sizeof(i)) #define rep(i, j, k) for(int i = j; i <= k; i++) #define dep(i, j, k) for(int i = k; i >= j; i--) #define pb push_back #define make make_pair #define INF INT_MAX #define inf LLONG_MAX #define PI acos(-1) using namespace std; const int N = 5e4 + 5; struct Point { double x, y; Point(double x = 0, double y = 0) : x(x), y(y) { } /// 构造函数 }; typedef Point Vector; /// 向量+向量=向量, 点+向量=向量 Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); } ///点-点=向量 Vector operator - (Point A, Point B) { return Vector(A.x - B.x, A.y - B.y); } ///向量*数=向量 Vector operator * (Vector A, double p) { return Vector(A.x * p, A.y * p); } ///向量/数=向量 Vector operator / (Vector A, double p) { return Vector(A.x / p, A.y / p); } const double eps = 1e-10; int dcmp(double x) { if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator < (const Point& a, const Point& b) { return a.x == b.x ? a.y < b.y : a.x < b.x; } bool operator == (const Point& a, const Point &b) { return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0; } double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; } /// 点积 double Length(Vector A) { return sqrt(Dot(A, A)); } /// 计算向量长度 double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); } /// 向量A、B夹角 double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; } /// 叉积 struct note { Point p; int V, L; }a[N]; Point P[N], Q[N]; int ConvexHull(Point* p, int n, Point* ch) { /// 求凸包 sort(p, p + n); int m = 0; rep(i, 0, n - 1) { while(m > 1 && Cross(ch[m - 1] - ch[m - 2], p[i] - ch[m - 2]) <= 0) m--; ch[m++] = p[i]; } int k = m; dep(i, 0, n - 2) { while(m > k && Cross(ch[m - 1] - ch[m - 2], p[i] - ch[m - 2]) <= 0) m--; ch[m++] = p[i]; } if(n > 1) m--; return m; } int ANS[N]; int main() { int n; int Cas = 0; while(scanf("%d", &n) && n) { rep(i, 0, n - 1) scanf("%lf %lf %d %d", &a[i].p.x, &a[i].p.y, &a[i].V, &a[i].L); int ans_val = 10000000, ans_num = 0; double ans_dis = 0.0; rep(i, 0, (1 << n) - 1) { /// 暴力枚举 int tmp_val = 0, tmp_num = 0; double tmp_dis = 0; rep(j, 0, n - 1) { if((i >> j) & 1) tmp_dis += a[j].L, tmp_val += a[j].V; else P[tmp_num++] = a[j].p; } tmp_num = ConvexHull(P, tmp_num, Q); double need_dis = 0.0; rep(j, 0, tmp_num - 1) { need_dis += Length(Q[(j + 1) % tmp_num] - Q[j]); } if(dcmp(tmp_dis - need_dis) >= 0) { if(tmp_val < ans_val) { ans_val = tmp_val; ans_num = 0; rep(j, 0, n - 1) { if((i >> j) & 1) ANS[ans_num++] = j + 1; } ans_dis = tmp_dis - need_dis; } else if(tmp_val == ans_val) { if(tmp_num < ans_num) { rep(j, 0, n - 1) { if((i >> j) & 1) ANS[ans_num++] = j + 1; } ans_dis = tmp_dis - need_dis; } } } } printf("Forest %d ", ++Cas); printf("Cut these trees:"); rep(i, 0, ans_num - 1) printf(" %d", ANS[i]); puts(""); printf("Extra wood: %.2f ", ans_dis); puts(""); } return 0; }