In order to make their sons brave, Jiajia and Wind take them to a big cave. The cave has n rooms, and one-way corridors connecting some rooms. Each time, Wind choose two rooms x and y, and ask one of their little sons go from one to the other. The son can either go from x to y, or from y to x. Wind promised that her tasks are all possible, but she actually doesn't know how to decide if a task is possible. To make her life easier, Jiajia decided to choose a cave in which every pair of rooms is a possible task. Given a cave, can you tell Jiajia whether Wind can randomly choose two rooms without worrying about anything?
Input
The first line contains a single integer T, the number of test cases. And followed T cases.
The first line for each case contains two integers n, m(0 < n < 1001,m < 6000), the number of rooms and corridors in the cave. The next m lines each contains two integers u and v, indicating that there is a corridor connecting room u and room v directly.
The first line for each case contains two integers n, m(0 < n < 1001,m < 6000), the number of rooms and corridors in the cave. The next m lines each contains two integers u and v, indicating that there is a corridor connecting room u and room v directly.
Output
The output should contain T lines. Write 'Yes' if the cave has the property stated above, or 'No' otherwise.
Sample Input
1 3 3 1 2 2 3 3 1
Sample Output
Yes
问:
给出的图是否存在对任意的u 和 v 要么u -> v, 要么 v -> u,这两者是或者的关系 不是并且
先求强连通,因为每个强连通分量中的点都可以相互到达,然后缩点 求最小路径覆盖
网上都是用的拓扑求最长路径 但最小路径覆盖就是这个思想
所以最后只要判断是否只有一个最小路径即可
代码就是改了一下HDU 3861的输出 所以就是水题啦
#include <iostream> #include <cstdio> #include <sstream> #include <cstring> #include <map> #include <cctype> #include <set> #include <vector> #include <stack> #include <queue> #include <algorithm> #include <cmath> #include <bitset> #define rap(i, a, n) for(int i=a; i<=n; i++) #define rep(i, a, n) for(int i=a; i<n; i++) #define lap(i, a, n) for(int i=n; i>=a; i--) #define lep(i, a, n) for(int i=n; i>a; i--) #define rd(a) scanf("%d", &a) #define rlld(a) scanf("%lld", &a) #define rc(a) scanf("%c", &a) #define rs(a) scanf("%s", a) #define rb(a) scanf("%lf", &a) #define rf(a) scanf("%f", &a) #define pd(a) printf("%d ", a) #define plld(a) printf("%lld ", a) #define pc(a) printf("%c ", a) #define ps(a) printf("%s ", a) #define MOD 2018 #define LL long long #define ULL unsigned long long #define Pair pair<int, int> #define mem(a, b) memset(a, b, sizeof(a)) #define _ ios_base::sync_with_stdio(0),cin.tie(0) //freopen("1.txt", "r", stdin); using namespace std; const int maxn = 110000, INF = 0x7fffffff; int n, m, s, t; vector<int> G[maxn]; int pre[maxn], low[maxn], sccno[maxn], dfs_clock, scc_cnt; stack<int> S; void dfs(int u) { pre[u] = low[u] = ++dfs_clock; S.push(u); for(int i = 0; i < G[u].size(); i ++) { int v = G[u][i]; if(!pre[v]) { dfs(v); low[u] = min(low[u], low[v]); } else if(!sccno[v]) { low[u] = min(low[u], pre[v]); } } if(low[u] == pre[u]) { scc_cnt++; for(;;) { int x = S.top(); S.pop(); sccno[x] = scc_cnt; if(x == u) break; } } } int cur[maxn], head[maxn], cnt, d[maxn], nex[maxn << 1]; struct node{ int u, v, c; }Node[maxn << 1]; void add_(int u, int v, int c) { Node[cnt].u = u; Node[cnt].v = v; Node[cnt].c = c; nex[cnt] = head[u]; head[u] = cnt++; } void add(int u, int v, int c) { add_(u, v, c); add_(v, u, 0); } bool bfs() { queue<int> Q; mem(d, 0); d[s] = 1; Q.push(s); while(!Q.empty()) { int u = Q.front(); Q.pop(); for(int i = head[u]; i!= -1; i = nex[i]) { int v = Node[i].v; if(!d[v] && Node[i].c > 0) { d[v] = d[u] + 1; Q.push(v); if(v == t) break; } } } return d[t] != 0; } int dfs(int u, int cap) { int ret = 0; if(u == t || cap == 0) return cap; for(int &i = cur[u];i != -1; i = nex[i]) { int v = Node[i].v; if(d[v] == d[u] + 1 && Node[i].c > 0) { int V = dfs(v, min(Node[i].c, cap)); Node[i].c -= V; Node[i ^ 1].c += V; ret += V; cap -= V; if(cap == 0) break; } } return ret; } int Dinic() { int ret = 0; while(bfs()) { memcpy(cur, head, sizeof head); ret += dfs(s, INF); } return ret; } int graph[5010][5010]; int main() { int T; rd(T); while(T--) { int u, v; mem(head, -1); cnt = 0; rd(n), rd(m); mem(sccno, 0); mem(pre, 0); dfs_clock = scc_cnt = 0; for(int i = 1; i <= n; i++) G[i].clear(); for(int i = 1; i <= m; i++) { int u, v; rd(u), rd(v); G[u].push_back(v); } for(int i = 1; i <= n; i ++) if(!pre[i]) dfs(i); s = 0, t = maxn - 1; rap(u, 1, n) { for(int i = 0; i < G[u].size(); i ++) { int v = G[u][i]; //cout << sccno[u] << " " << sccno[v] << endl; if(sccno[u] != sccno[v]) add(sccno[u], scc_cnt + sccno[v], 1); } } rap(i, 1, scc_cnt) add(s, i, 1), add(scc_cnt + i, t, 1); if(scc_cnt - Dinic() == 1) printf("Yes "); else printf("No "); } return 0; }