• XTU 1250


    http://202.197.224.59/OnlineJudge2/index.php/Problem/read/id/1250

    Super Fast Fourier Transform

    Bobo has two sequences of integers {a1,a2,,an} and {b1,b2,,bm}. He would like to find

    i=1nj=1m|aibj|−−−−−−−√.

    Note that x denotes the maximum integer does not exceed x, and |x| denotes the absolute value of x.

    Input

    The input contains at most 30 sets. For each set:

    The first line contains 2 integers n,m (1n,m105).

    The second line contains n integers a1,a2,,an.

    The thrid line contains m integers b1,b2,,bm.

    (ai,bi0,a1+a2++an,b1+b2+,bm106)

    Output

    For each set, an integer denotes the sum.

    Sample Input

    1 2
    1
    2 3
    2 3
    1 2
    3 4 5
    

    Sample Output

    2
    7

    不得不说自己笨,这么简单,当时就是不会

    题意:n个a,m个b的相乘的累积和

    思路:把重复的a和b找出了,会减少很大的复杂度

     1 #include <stdio.h>
     2 #include <math.h>
     3 #include <string.h>
     4 #include <stdlib.h>
     5 
     6 int a[100005],b[100005],suma[1000005],sumb[1000005];
     7 long long ans;
     8 
     9 int main()
    10 {
    11     int m,n,acut,bcut,tmp;
    12     while(~scanf("%d%d",&m,&n))
    13     {
    14         acut = 0,bcut = 0;
    15         memset(suma,0,sizeof(suma));
    16         memset(sumb,0,sizeof(sumb));
    17         for(int i = 1;i<=m;i++)
    18         {
    19             scanf("%d",&tmp);
    20             if(suma[tmp]==0)
    21                 a[acut++] = tmp;
    22             suma[tmp]++;
    23         }
    24         for(int i = 1;i<=n;i++)
    25         {
    26             scanf("%d",&tmp);
    27             if(sumb[tmp]==0)
    28                 b[bcut++] = tmp;
    29             sumb[tmp]++;
    30         }
    31         ans = 0;
    32         for(int i = 0;i<acut;i++)
    33             for(int j = 0;j<bcut;j++)
    34             {
    35                 ans+=(long long ) suma[a[i]]*sumb[b[j]]*(long long )(sqrt(abs(a[i]-b[j])));
    36             }
    37         printf("%lld
    ",ans);
    38     }
    39     return 0;
    40 }
  • 相关阅读:
    安装完openfire之后打不开的解决方案
    iOS中动画的简单使用
    iOS中的多线程及GCD
    iOS 架构模式-MVVM
    iOS
    iOS 下拉刷新 上拉加载实现原理
    iOS
    iOS 中的XML解析代码(SAX)
    iOS
    iOS中的网络请求 和 网络监测
  • 原文地址:https://www.cnblogs.com/Tree-dream/p/6540096.html
Copyright © 2020-2023  润新知