• Fourier Transform Complex Conjugate Discussion


    FT of function $f(t)$ is to take integration of the product of $f(t)$ and $e^{-jOmega t}$. By separating these two term into real and imaginary forms, the FT can be written as follow: 

    $egin{align*}mathcal{F}Big( f(t) Big) &= int_{-infty}^{infty}f(t)e^{-jOmega t}dt\
    &=int_{-infty}^{infty}ig[f_R(t)+if_I(t)ig]ig[cos(-Omega t)+isin(-Omega t)ig]dt\
    &=int_{-infty}^{infty}Big{f_R(t)cos(-Omega t)-f_I(t)sin(-Omega t)+iBig[f_R(t)sin(-Omega t)+f_I(t)cos(-Omega t)Big]Big}dt\
    &=int_{-infty}^{infty}f_R(t)cos(-Omega t)dt-int_{-infty}^{infty}f_I(t)sin(-Omega t)dt+iint_{-infty}^{infty}f_R(t)sin(-Omega t)dt+iint_{-infty}^{infty}f_I(t)cos(-Omega t)dt
    end{align*}$

    Now, consider a function $g(t)=f(-t)$, and take the FT on function $g(t)$:

    $egin{align*}mathcal{F}Big( g(t) Big) &= int_{-infty}^{infty}g(t)e^{-jOmega t}dt\
    &=int_{-infty}^{infty}f(-t)e^{-jOmega t}dt\
    &=int_{infty}^{-infty}f(v)e^{-jOmega(-v)}d(-v) qquad letting v=-t\
    &=int_{-infty}^{infty}f(v)e^{jOmega v}dv\
    &=int_{-infty}^{infty}ig[f_R(v)+if_I(v)ig]ig[cos(Omega v)+isin(Omega v)ig]dv\
    &=int_{-infty}^{infty}Big{f_R(v)cos(Omega v)-f_I(v)sin(Omega v)+iBig[f_R(v)sin(Omega v)+f_I(v)cos(Omega v)Big]Big}dv\
    &=int_{-infty}^{infty}f_R(v)cos(Omega v)dv-int_{-infty}^{infty}f_I(v)sin(Omega v)dv+iint_{-infty}^{infty}f_R(v)sin(Omega v)dv+iint_{-infty}^{infty}f_I(v)cos(Omega v)dv\
    &=int_{-infty}^{infty}f_R(v)cos(-Omega v)dv-int_{-infty}^{infty}f_I(v)sin(Omega v)dv-iint_{-infty}^{infty}f_R(v)sin(-Omega v)dv+iint_{-infty}^{infty}f_I(v)cos(Omega v)dvend{align*}$

    Compare the derivations. Only if the function $f(t)$ is real ($f_I = 0$) can we receive the equations:

    $egin{align*}
    mathcal{F}Big(f(t)Big)
    &=int_{-infty}^{infty}f_R(t)cos(-Omega t)dt+iint_{-infty}^{infty}f_R(t)sin(-Omega t)dt\
    mathcal{F}Big( f(-t) Big)
    &=int_{-infty}^{infty}f_R(t)cos(-Omega t)dt-iint_{-infty}^{infty}f_R(t)sin(-Omega t)dtend{align*}$

    Which can be easily concluded that if $f(t)$ is real, the FT of $f(t)$ is complex conjugate to the FT of $f(-t)$

    $color{red}{mathcal{F}Big(f(-t)Big) = F^{*}(jOmega) qquad for f(t) is real}$

    Take FT on the complex conjugate function $f^{*}(t) = f_R(t) – if_I(t)$

    $egin{align*}
    mathcal{F}Big(f^*(t)Big)
    &=int_{-infty}^{infty}f^*(t)e^{-jOmega t}dt\
    &=int_{-infty}^{infty}Big[f_R(t)-if_I( t)ig]ig[cos(-Omega t)+isin(-Omega t)Big]dt\
    &=int_{-infty}^{infty}Big{f_R(t)cos(-Omega t)+f_I(t)sin(-Omega t)+iBig[f_R(t)sin(-Omega t)-f_I(t)cos(-Omega t)Big]Big}dt\
    &=int_{-infty}^{infty}Big{f_R(t)cos(Omega t)-f_I(t)sin(Omega t)+iBig[-f_R(t)sin(Omega t)-f_I(t)cos(Omega t)Big]Big}dt\
    &=int_{-infty}^{infty}Big{f_R(t)cos(Omega t)-f_I(t)sin(Omega t)-iBig[f_R(t)sin(Omega t)+f_I(t)cos(Omega t)Big]Big}dt\
    &=int_{-infty}^{infty}f_R(t)cos(Omega t)dt-int_{-infty}^{infty}f_I(t)sin(Omega t)dt-ileft{int_{-infty}^{infty}f_R(t)sin(Omega t)dt+int_{-infty}^{infty}f_I(t)cos(Omega t)dt ight}\
    end{align*}$

    Compare the equations. 

    $egin{align*}
    mathcal{F}Big(f(t)Big)
    &=int_{-infty}^{infty}f_R(t)cos(-Omega t)dt-int_{-infty}^{infty}f_I(t)sin(-Omega t)dt+ileft{int_{-infty}^{infty}f_R(t)sin(-Omega t)dt+int_{-infty}^{infty}f_I(t)cos(-Omega t)dt ight}\
    mathcal{F}Big(f^*(t)Big)
    &=int_{-infty}^{infty}f_R(t)cos(Omega t)dt-int_{-infty}^{infty}f_I(t)sin(Omega t)dt-ileft{int_{-infty}^{infty}f_R(t)sin(Omega t)dt+int_{-infty}^{infty}f_I(t)cos(Omega t)dt ight}\
    end{align*}$

    The sign of $Omega$ and the sign of imaginary part have been changed. We can concluded that FT of the complex conjugate of function f is equal to the FT of the function f then do the complex conjugate and reverse on frequency domain.

    $color{red}{mathcal{F}Big(f^*(t)Big) = F^*(-jOmega)}$

  • 相关阅读:
    关于maven下载速度慢,下载完的依赖包不知去向的应对措施
    进一步解析二分搜索树的实现
    mysql语法建库建表综合整理是示例
    走进二分搜索树的第一课
    优先队列和堆
    window系统mysql安装后获取默认密码
    微信小程序中使用云开发获取openid
    使用IDEA将springboot框架导入的两种方法
    C/C++、Qt4实现FTP客户端(有无界面版)
    云服务器搭建代理服务器 —— 某sock ,简单说明
  • 原文地址:https://www.cnblogs.com/TaigaCon/p/9125855.html
Copyright © 2020-2023  润新知