(Descripiton)
给出(q[ ]),$$F[j]=sum_{i<j}frac{q_iq_j}{(i-j)^2}-sum_{i>j}frac{q_iq_j}{(i-j)^2}$$
令(E_i=frac{F_i}{q_i}),求所有(E[i])。
(Solution)
这的挺详细了,我再写遍。
(下标从0开始,(n=n-1))
可以把(q_j)约去,即$$E_j=sum_{i=0}^{j-1}frac{q_i}{(i-j)^2}-sum_{i=j+1}^nfrac{q_i}{(i-j)^2}$$
令(f[i]=q[i],g[i]=frac{1}{i^2}),规定(g[0]=0),那么
[E_j=sum_{i=0}^{j-1}f[i]*g[j-i]-sum_{i=j+1}^nf[i]*g[j-i]
]
(注意是个平方)
左边(sum_{i=0}^{j-1}f[i]*g[j-i]=sum_{i=0}^{j}f[i]*g[j-i])就是卷积的形式,可以直接算。
右边
[ egin{aligned}
sum_{i=j+1}^nf[i]*g[j-i]&=sum_{i=j}^nf[i]*g[j-i]\
&=sum_{i=0}^{n-j}f[i+j]*g[i]
end{aligned}
]
反转(f[ ]),令(h[n-j-i]=f[i+j]),那么$$sum_{i=0}^{n-j}f[i+j]g[i]=sum_{i=0}^{n-j}h[n-j-i]g[i]$$
令(X_{n-j}=sum_{i=0}^{n-j}h[n-j-i]*g[i]),也用FFT计算就可以了。
最后(E_j=sum_{i=0}^{j-1}f[i]*g[j-i]-X_{n-j})。
//15204kb 3140ms
#include <cmath>
#include <cstdio>
#include <algorithm>
const int N=263000;//2^{18}=262144 > 2*1e5
const double PI=acos(-1);
int n;
double q[N];
struct Complex
{
double x,y;
Complex() {}
Complex(double x,double y):x(x),y(y) {}
Complex operator + (const Complex &a)const{
return Complex(x+a.x, y+a.y);
}
Complex operator - (const Complex &a)const{
return Complex(x-a.x, y-a.y);
}
Complex operator * (const Complex &a)const{
return Complex(x*a.x-y*a.y, x*a.y+y*a.x);
}
}f[N],g[N],h[N];
void FFT(Complex *a,int lim,int opt)
{
for(int i=0,j=0; i<lim; ++i)
{
if(i>j) std::swap(a[i],a[j]);
for(int l=lim>>1; (j^=l)<l; l>>=1);
}
for(int i=2; i<=lim; i<<=1)
{
int mid=i>>1;
Complex Wn(cos(PI/mid),opt*sin(PI/mid)),t;
// Complex Wn(cos(2.0*PI/i),opt*sin(2.0*PI/i)),t;
for(int j=0; j<lim; j+=i)
{
Complex w(1,0);
for(int k=0; k<mid; ++k,w=w*Wn)
a[j+mid+k]=a[j+k]-(t=w*a[j+mid+k]),
a[j+k]=a[j+k]+t;
}
}
if(opt==-1)
for(int i=0; i<lim; ++i) a[i].x/=lim;
}
int main()
{
scanf("%d",&n), --n;
int lim=1;
while(lim <= n<<1) lim<<=1;
for(int i=0; i<=n; ++i) scanf("%lf",&q[i]);
for(int i=0; i<=n; ++i) f[i]=Complex(q[i],0);
for(int i=0; i<=n; ++i) h[i]=Complex(q[n-i],0);
for(int i=1; i<=n; ++i) g[i]=Complex(1.0/i/i,0);
g[0]=Complex(0,0);
FFT(f,lim,1), FFT(g,lim,1), FFT(h,lim,1);
for(int i=0; i<lim; ++i) f[i]=f[i]*g[i], h[i]=h[i]*g[i];
FFT(f,lim,-1), FFT(h,lim,-1);
for(int i=0; i<=n; ++i) printf("%.3lf
",f[i].x-h[n-i].x);
return 0;
}