Description
Problem C: Jolly Jumpers
A sequence of n > 0 integers is called a jolly jumper if the absolute values of the difference between successive elements take on all the values 1 through n-1. For instance,
1 4 2 3
is a jolly jumper, because the absolutes differences are 3, 2, and 1 respectively. The definition implies that any sequence of a single integer is a jolly jumper. You are to write a program to determine whether or not each of a number of sequences is a jolly jumper.
Input
Each line of input contains an integer n < 3000 followed by n integers representing the sequence.
Output
For each line of input, generate a line of output saying "Jolly" or "Not jolly".
Sample Input
4 1 4 2 3 5 1 4 2 -1 6
Sample Output
Jolly Not jolly
Source
题意:n个数字,每对连续的两个数字,如果后数与前数差值的绝对值能覆盖1~(n-1)的每一个数,就输出Jolly,否则输出Not jolly
#include <cstdio> #include <iostream> #include <cmath> #include <string> #include <cstring> #include <algorithm> #include <queue> #include <vector> #include <map> using namespace std; #define ll long long const int inf = 0x3f3f3f3f; const int mod = 1e9+7; int n, a[10000+8], buffer[10000+8]; int main() { while(~scanf("%d", &n)) { int id = 0; for(int i = 0; i<n; i++) { scanf("%d", &a[i]); if(i)buffer[id++] = abs(a[i]-a[i-1]); } sort(buffer, buffer+id); bool flag = 1; for(int i = 0; i<id; i++) { if(buffer[i] != i+1) { flag = 0; break; } } if(flag)printf("Jolly "); else printf("Not jolly "); } return 0; }