• 第五届蓝桥杯(2014)C/C++大学A组省赛题解


    第一题、猜年龄

    小明带两个妹妹参加元宵灯会。别人问她们多大了,她们调皮地说:“我们俩的年龄之积是年龄之和的6倍”。小明又补充说:“她们可不是双胞胎,年龄差肯定也不超过8岁啊。”

    请你写出:小明的较小的妹妹的年龄。

    注意: 只写一个人的年龄数字,请通过浏览器提交答案。不要书写任何多余的内容。

    答案:10

    int main() {
        ios_base::sync_with_stdio(false), cin.tie(0);
        for (int i = 1; i <= 100; ++i)
            for (int j = i + 1; j <= i + 8; ++j)
                if (i * j == (j + i) * 6) cout << i << " " << j << "
    ";
        return 0;
    }
    // 妹妹 10岁,姐姐 15岁A
    

    第二题、切面条

    一根高筋拉面,中间切一刀,可以得到2根面条。
    如果先对折1次,中间切一刀,可以得到3根面条。
    如果连续对折2次,中间切一刀,可以得到5根面条。
    那么,连续对折10次,中间切一刀,会得到多少面条呢?
    答案是个整数,请通过浏览器提交答案。不要填写任何多余的内容。

    答案:1025

    公式:(2^n + 1)(pow(2,10) + 1)

    第三题、神奇算式

    由4个不同的数字,组成的一个乘法算式,它们的乘积仍然由这4个数字组成。
    比如:

    210 x 6 = 1260
    8 x 473 = 3784
    27 x 81 = 2187

    都符合要求。
    如果满足乘法交换律的算式算作同一种情况,那么,包含上边已列出的3种情况,一共有多少种满足要求的算式。
    请填写该数字,通过浏览器提交答案,不要填写多余内容(例如:列出所有算式)。

    #include <bits/stdc++.h>
    using namespace std;
    
    string i2s(int i) {
        stringstream ss;
        string s;
        ss << i;
        ss >> s;
        return s;
    }
    
    void solve1(int i, int j, int k, int l) {
        int a = i;
        int b = 100 * j + 10 * k + l;
        int c = a * b;
        string s = i2s(c);
        if (s.find(i + '0') != string::npos && s.find(j + '0') != string::npos &&
            s.find(k + '0') != string::npos && s.find(l + '0') != string::npos)
            cout << a << "*" << b << "=" << c << endl;
    }
    void solve2(int i, int j, int k, int l) {
        int a = 10 * i + j;
        int b = 10 * k + l;
        if (a >= b)
            return;  //两位数相乘的情况会出现满足乘法交换律的两组算式,排除其中一组
        int c = a * b;
        string s = i2s(c);
        if (s.find(i + '0') != string::npos && s.find(j + '0') != string::npos &&
            s.find(k + '0') != string::npos && s.find(l + '0') != string::npos)
            cout << a << "*" << b << "=" << c << endl;
    }
    
    int main() {
        for (int i = 1; i <= 9; i++)
            for (int j = 0; j <= 9; j++)
                for (int k = 0; k <= 9; k++)
                    for (int l = 0; l <= 9; l++)
                        if (i != j && i != k && i != l && j != k && j != l &&
                            k != l) {
                            solve1(i, j, k, l);
                            solve2(i, j, k, l);
                        }
    
        return 0;
    }
    // 输出 12 组算式
    

    代码看起来很长,其实solve1和solve2几乎都是重复的,作为填空题无脑解法,写起来还是很快的。。

    一开始两位数相乘那边忘了考虑乘法交换律,算出来有18组,把算式打印出来看了一下发现有重复的,于是又加了**乘数 a<b **的条件。

    string里找子串可以用 str.find("xxx")!=string::npos; 还真忘了。。还查了下C++ reference来着orz。还看到有先把两个字符串排序再比较的,

    还有就是'0'-'9'以内的字符和0-9以内的数字转换可以用 char = int +'0'; int = char -'0'的方法~强转还是不太安全的,至少在 devc++ 里会打印出奇怪的东西。。

    第四题、史丰收速算

    史丰收速算法的革命性贡献是:从高位算起,预测进位。不需要九九表,彻底颠覆了传统手算!
    速算的核心基础是:1位数乘以多位数的乘法。
    其中,乘以7是最复杂的,就以它为例。
    因为,1/7 是个循环小数:0.142857…,如果多位数超过 142857…,就要进1
    同理,2/7, 3/7, … 6/7 也都是类似的循环小数,多位数超过 n/7,就要进n
    下面的程序模拟了史丰收速算法中乘以7的运算过程。
    乘以 7 的个位规律是:偶数乘以2,奇数乘以2再加5,都只取个位。
    乘以 7 的进位规律是:
    满 142857… 进1,
    满 285714… 进2,
    满 428571… 进3,
    满 571428… 进4,
    满 714285… 进5,
    满 857142… 进6
    请分析程序流程,填写划线部分缺少的代码。

    //计算个位 
    int ge_wei(int a)
    {
        if(a % 2 == 0)
            return (a * 2) % 10;
        else
            return (a * 2 + 5) % 10;    
    }
    
    //计算进位 
    int jin_wei(char* p)
    {
        char* level[] = {
            "142857",
            "285714",
            "428571",
            "571428",
            "714285",
            "857142"
        };    
        char buf[7];
        buf[6] = '';
        strncpy(buf,p,6);    
        int i;
        for(i=5; i>=0; i--){
            int r = strcmp(level[i], buf);
            if(r<0) return i+1;
            while(r==0){
                p += 6;
                strncpy(buf,p,6);
                r = strcmp(level[i], buf);
                if(r<0) return i+1;
         	    if(r > 0) return ___________;  //填空
                // if(r > 0) return i;
            }
        }   
        return 0;
    }
    //多位数乘以7
    void f(char* s) 
    {
        int head = jin_wei(s);
        if(head > 0) printf("%d", head);
        char* p = s;
        while(*p){
            int a = (*p-'0');
            int x = (ge_wei(a) + jin_wei(p+1)) % 10;
            printf("%d",x);
            p++;
        }
       printf("
    ");
    }
    int main()
    {
        f("428571428571");
        f("34553834937543");        
        return 0;
    }
    

    第五题、锦标赛

    如果要在n个数据中挑选出第一大和第二大的数据(要求输出数据所在位置和值),使用什么方法比较的次数最少?
    我们可以从体育锦标赛中受到启发。
    如图【1.png】所示,8个选手的锦标赛,先两两捉对比拼,淘汰一半。优胜者再两两比拼…直到决出第一名。
    第一名输出后,只要对黄色标示的位置重新比赛即可。 下面的代码实现了这个算法(假设数据中没有相同值)。
    代码中需要用一个数组来表示图中的树(注意,这是个满二叉树,不足需要补齐)。它不是存储数据本身,而是存储了数据的下标。
    第一个数据输出后,它所在的位置被标识为-1
    请仔细分析流程,填写缺失的代码。
    通过浏览器提交答案,只填写缺失的代码,不要填写已有代码或其它说明语句等。

    img

    //重新决出k号位置,v为已输出值 
    void pk(int* a, int* b, int n, int k, int v)
    {	
    	int k1 = k*2 + 1;	
    	int k2 = k1 + 1;		
    	if(k1>=n || k2>=n){
    		b[k] = -1;		
    		return;	}				
    	if(b[k1]==v) 		
    		pk(a,b,n,k1,v);	
    	else		
    		pk(a,b,n,k2,v);		
    	//重新比较	
    	if(b[k1]<0){
    		if(b[k2]>=0)			
    			b[k] = b[k2]; 		
    		else			
    		b[k] = -1;		
    		return;	}
    	if(b[k2]<0){		
    		if(b[k1]>=0)			
    			b[k] = b[k1]; 		
    		else			
    		b[k] = -1;		
    		return;	}
        //if (a[b[k1]] > a[b[k2]])
    	if(________) //代码补充		
    		b[k] = b[k1];	
    	else		
    		b[k] = b[k2];} 
    //对a中数据,输出最大,次大元素位置和值 
    void f(int* a, int len){	
    	int n = 1;	
    	while(n<len) n *= 2;		
    	int* b = (int*)malloc(sizeof(int*) * (2*n-1));	
    	int i;	
    	for(i=0; i<n; i++){ 		
    		if(i<len) 			
    			b[n-1+i] = i;		
    		else			
    		b[n-1+i] = -1;	}		
    	//从最后一个向前处理	
    	for(i=2*n-1-1; i>0; i-=2){		
    		if(b[i]<0){			
    			if(b[i-1]>=0)				
    				b[(i-1)/2] = b[i-1]; 			
    			else				
    				b[(i-1)/2] = -1;		
    			}		
    		else{			
    			if(a[b[i]]>a[b[i-1]])				
    				b[(i-1)/2] = b[i];			
    			else				
    				b[(i-1)/2] = b[i-1];		
    		}	
    	}		
    	//输出树根	
    	printf("%d : %d
    ", b[0], a[b[0]]);
    			
    	//值等于根元素的需要重新pk	
    	pk(a,b,2*n-1,0,b[0]);
    			
    	//再次输出树根	
    	printf("%d : %d
    ", b[0], a[b[0]]);		
    	free(b);} 
    	
    int main(){	
    	int a[] = {54,55,18,16,122,17,30,9,58};	
    	f(a,9);	
    }     
    
    

    第六题、扑克序列

    A A 2 2 3 3 4 4, 一共4对扑克牌。请你把它们排成一行。 要求:两个A中间有1张牌,两个2之间有2张牌,两个3之间有3张牌,两个4之间有4张牌。
    请填写出所有符合要求的排列中,字典序最小的那个。
    例如:22AA3344 比 A2A23344 字典序小。当然,它们都不是满足要求的答案。
    请通过浏览器提交答案。“A”一定不要用小写字母a,也不要用“1”代替。字符间一定不要留空格。

    // RioTian 21/03/16
    #include <bits/stdc++.h>
    using namespace std;
    using ll = long long;
    int main() {
        ios_base::sync_with_stdio(false), cin.tie(0);
        string s = "223344AA";
        do {
            if (s.rfind('A') - s.find('A') == 2 &&
                s.rfind('2') - s.find('2') == 3 &&
                s.rfind('3') - s.find('3') == 4 && s.rfind('4') - s.find('4') == 5)
                cout << s << "
    ";
        } while (next_permutation(s.begin(), s.end()));
        return 0;
    }
    // 2342A3A4
    // 4A3A2432
    

    七、蚂蚁感冒

    长100厘米的细长直杆子上有n只蚂蚁。它们的头有的朝左,有的朝右。

    每只蚂蚁都只能沿着杆子向前爬,速度是1厘米/秒。

    当两只蚂蚁碰面时,它们会同时掉头往相反的方向爬行。

    这些蚂蚁中,有1只蚂蚁感冒了。并且在和其它蚂蚁碰面时,会把感冒传染给碰到的蚂蚁。

    请你计算,当所有蚂蚁都爬离杆子时,有多少只蚂蚁患上了感冒。
      
    输入格式
    第一行输入一个整数n (1 < n < 50), 表示蚂蚁的总数。
    接着的一行是n个用空格分开的整数 Xi (-100 < Xi < 100), Xi的绝对值,表示蚂蚁离开杆子左边端点的距离。正值表示头朝右,负值表示头朝左,数据中不会出现0值,也不会出现两只蚂蚁占用同一位置。其中,第一个数据代表的蚂蚁感冒了。

    输出格式
    要求输出1个整数,表示最后感冒蚂蚁的数目。

    样例输入

    3
    5 -2 8
    

    样例输出

    1
    

    样例输入

    5
    -10 8 -20 12 25
    

    样例输出

    3
    

    这道题模拟会很麻烦的,不过如果有做过了挑战程序竞赛的话,上面有类似的题。

    思路:两只蚂蚁相遇不需要掉头,而是交错走过去,然后在判断后续的即可

    #include <bits/stdc++.h>
    using namespace std;
    using ll = long long;
    int a[60];
    int main() {
        ios_base::sync_with_stdio(false), cin.tie(0);
        int n;
        cin >> n;
        for (int i = 1; i <= n; ++i) cin >> a[i];
        int x = a[1];  // 第一只蚂蚁感冒
    
        if (x > 0) {  // 感冒蚂蚁向右边走
            int ans = 1;
            for (int i = 1; i <= n; ++i)
                if (a[i] < 0 && -a[i] > x) ans++;
            if (ans != 1) {  // 代表有蚂蚁遇到生病蚂蚁了
                for (int i = 1; i <= n; ++i)
                    if (a[i] > 0 && a[i] < x) ++ans;
            }
            cout << ans << " ";
        }
    
        if (x < 0) {  //感冒蚂蚁向左走
            int ans = 1;
            for (int i = 0; i < n; i++)
                if (a[i] > 0 && a[i] < -x) ans++;
    
            if (ans != 1) {  //有蚂蚁穿过第一只感冒蚂蚁
                for (int i = 0; i < n; i++)
                    if (a[i] < 0 && -a[i] > -x) ans++;
                cout << ans << " ";
            }
        }
    
        return 0;
    }
    

    八、地宫取宝

    X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。
    地宫的入口在左上角,出口在右下角。
    小明被带到地宫的入口,国王要求他只能向右或向下行走。
    走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。
    当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。
    请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。
    【数据格式】
    输入一行3个整数,用空格分开:n m k (1<=n,m<=50, 1<=k<=12)
    接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值
    要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。
    例如,输入:

    2 2 2
    1 2
    2 1
    

    程序应该输出:

    2
    

    再例如,输入:

    2 3 2
    1 2 3
    2 1 5
    

    程序应该输出:

    14
    

    第九题、斐波那契

    斐波那契数列大家都非常熟悉。它的定义是:f(x) = 1 … (x=1,2)
    f(x) = f(x-1) + f(x-2) … (x>2)
    对于给定的整数 n 和 m,我们希望求出:
      f(1) + f(2) + … + f(n) 的值。但这个值可能非常大,所以我们把它对 f(m) 取模。
    公式如下
    但这个数字依然很大,所以需要再对 p 求模。

    输入格式
      输入为一行用空格分开的整数 n m p (0 < n, m, p < (10^{18}))

    输出格式
      输出为1个整数,表示答案样例输入

    2 3 5
    

    样例输出

    0
    

    样例输入

    15 11 29
    

    样例输出

    25
    

    思路就是:(S(n)=f(n+2)-1)(原式 =(f(n+2)-1)%f(m)%p) 再利用矩阵快速幂求 (f())

    第十题、波动数列

    观察这个数列:

    1 3 0 2 -1 1 -2 …

    这个数列中后一项总是比前一项增加2或者减少3。

    栋栋对这种数列很好奇,他想知道长度为 n 和为 s 而且后一项总是比前一项增加a或者减少b的整数数列可能有多少种呢?

    【数据格式】

    输入的第一行包含四个整数 n s a b,含义如前面说述。

    输出一行,包含一个整数,表示满足条件的方案数。由于这个数很大,请输出方案数除以100000007的余数。

    例如,输入:

    4 10 2 3
    

    程序应该输出:

    2
    

    【样例说明】

    这两个数列分别是2 4 1 3和7 4 1 -2。
    【数据规模与约定】

    对于10%的数据,1<=n<=5,0<=s<=5,1<=a,b<=5;

    对于30%的数据,1<=n<=30,0<=s<=30,1<=a,b<=30;

    对于50%的数据,1<=n<=50,0<=s<=50,1<=a,b<=50;

    对于70%的数据,1<=n<=100,0<=s<=500,1<=a, b<=50;

    对于100%的数据,1<=n<=1000,-1,000,000,000<=s<=1,000,000,000,1<=a, b<=1,000,000。

    The desire of his soul is the prophecy of his fate
    你灵魂的欲望,是你命运的先知。

  • 相关阅读:
    uboot移植步骤详解
    使用busybox制作根文件系统(rootfs)
    DULG uboot解决问题的文档
    uboot的环境变量
    ASP.NET状态管理 APPlication,Session,Cookie和ViewStat用法
    WCF事务
    WCF中流的处理
    C#操作配置文件
    WCF实例模式和对象生命周期
    WCF中实例模式(InstanceContextMode)与会话模式(SessionMode)
  • 原文地址:https://www.cnblogs.com/RioTian/p/14545176.html
Copyright © 2020-2023  润新知