• Caffe源码Blob类


    Blob类简介

    Blob是caffe中的数据传递的一个基本类,网络各层的输入输出数据以及网络层中的可学习参数(learnable parameters,如卷积层的权重和偏置参数)都是Blob类型。Blob内部包含SyncedMemory类型的 data_ (数据,用于前向计算)和 diff_ (梯度,用于反向传播),以及表示数据形状的 shape_data_ (旧版本)和 shape_ (新版本)。Blob中还有表示有效数据的个数的变量 count_ 和表示当前数据的最大容量的变量 capacity_ 。剩余的为一些用于访问、修改data_或diff_数据的值、形状的一些函数。

    blob.cpp源码

    //调整blob中数据的形状,与openv中的Mat::Reshape()一样,只修改与数据的形状相关的变量,没有拷贝数据的操作
    template <typename Dtype>
    void Blob<Dtype>::Reshape(const int num, const int channels, const int height,
        const int width) {
      vector<int> shape(4);
      shape[0] = num;
      shape[1] = channels;
      shape[2] = height;
      shape[3] = width;   //设置n,c,h,w
      Reshape(shape);
    }
    
    //修改blob数据的形状,但不会改变data_中的值(除非重新创建)
    template <typename Dtype>
    void Blob<Dtype>::Reshape(const vector<int>& shape) {
      CHECK_LE(shape.size(), kMaxBlobAxes);   //检查shape的维度不能超过kMaxBlobAxes
      count_ = 1;                     //新的总大小,count_ = shape[0] * shape[1] * ... * shape[shape.size() - 1]
      shape_.resize(shape.size());    //修改shape_变量的大小
      if (!shape_data_ || shape_data_->size() < shape.size() * sizeof(int)) { //shape_data_不为空,且大小比新的小
        shape_data_.reset(new SyncedMemory(shape.size() * sizeof(int)));      //shape_ptr::reset,清除之前的数据指针,重新申请
      }
      int* shape_data = static_cast<int*>(shape_data_->mutable_cpu_data());   //shape_data_的数据指针
      for (int i = 0; i < shape.size(); ++i) {
        CHECK_GE(shape[i], 0);    //检查 shape[i] >= 0 (注意,reshape()允许shape[i]为0)
        if (count_ != 0) {        //检查数据的总体大小是否可能会超出INT_MAX(int类型的最大值)
          CHECK_LE(shape[i], INT_MAX / count_) << "blob size exceeds INT_MAX";
        }
        count_ *= shape[i];       //新shape的各个维度之积
        shape_[i] = shape[i];     //设置shape_(新版本使用)和shape_data_(旧版本使用)中的值
        shape_data[i] = shape[i];
      }
      if (count_ > capacity_) {   //如果新的形状的总大小超出之前容纳范围,则创建新的SyncedMemory对象
        capacity_ = count_;       //设置为新的
        data_.reset(new SyncedMemory(capacity_ * sizeof(Dtype))); //此处只是创建了SyncedMemory对象,但是并未真正的分配内存或显存
        diff_.reset(new SyncedMemory(capacity_ * sizeof(Dtype))); //在第一次访问内部的数据的时候才会分配(参见SyncedMemory.cpp)
      }
    }
    
    //根据shape的值修改blob中数据的形状    //BlobShape定义在caffe.pb.h文件中,caffe.pb.h和caffe.pb.cc由caffe.proto生成
    template <typename Dtype>
    void Blob<Dtype>::Reshape(const BlobShape& shape) {
      CHECK_LE(shape.dim_size(), kMaxBlobAxes); //同样检查维度数不能超过kMaxBlobAxes
      vector<int> shape_vec(shape.dim_size());
      for (int i = 0; i < shape.dim_size(); ++i) {
        shape_vec[i] = shape.dim(i);    //设置
      }
      Reshape(shape_vec);
    }
    
    //调整当前blob的形状,使其与other的数据的形状一致
    template <typename Dtype>
    void Blob<Dtype>::ReshapeLike(const Blob<Dtype>& other) {
      Reshape(other.shape());
    }
    
    //blob的构造函数,创建对应形状的blob数据
    template <typename Dtype>
    Blob<Dtype>::Blob(const int num, const int channels, const int height,
        const int width)
      // capacity_ must be initialized before calling Reshape
      : capacity_(0) {    //初始必须先将容量capacity_设置为0,保证reshape时一定会给data_和diff_创建新的SyncedMemory对象
      Reshape(num, channels, height, width);
    }
    
    template <typename Dtype>
    Blob<Dtype>::Blob(const vector<int>& shape)     //blob的构造函数
      // capacity_ must be initialized before calling Reshape
      : capacity_(0) {
      Reshape(shape);
    }
    
    template <typename Dtype>
    const int* Blob<Dtype>::gpu_shape() const {     //返回blob中gpu数据的形状
      CHECK(shape_data_);
      return (const int*)shape_data_->gpu_data();
    }
    
    template <typename Dtype>
    const Dtype* Blob<Dtype>::cpu_data() const {    //返回blob中数据在cpu上的指针
      CHECK(data_);
      return (const Dtype*)data_->cpu_data();
    }
    
    template <typename Dtype>
    void Blob<Dtype>::set_cpu_data(Dtype* data) {   //修改blob中数据在cpu上的指针
      CHECK(data);
      // Make sure CPU and GPU sizes remain equal
      size_t size = count_ * sizeof(Dtype);   //当前blob中的数据的大小
      if (data_->size() != size) {            //data_->size()/sizeof(Dtype)即为capacity_,与count_不一定相等
        data_.reset(new SyncedMemory(size));  //创建新的SyncedMemory对象,data_和diff_中cpu和gpu数据大小一致
        diff_.reset(new SyncedMemory(size));
      }
      data_->set_cpu_data(data);  //调用SyncedMemory类中的set_cpu_data(),设置cpu数据的指针和数据的状态HEAD_AT_CPU等
    }
    
    template <typename Dtype>
    const Dtype* Blob<Dtype>::gpu_data() const {    //返回blob中数据在gpu上的指针
      CHECK(data_);
      return (const Dtype*)data_->gpu_data();
    }
    
    template <typename Dtype>
    void Blob<Dtype>::set_gpu_data(Dtype* data) {   //修改blob中数据在gpu上的指针,与set_cpu_data操作类似
      CHECK(data);
      // Make sure CPU and GPU sizes remain equal
      size_t size = count_ * sizeof(Dtype);
      if (data_->size() != size) {
        data_.reset(new SyncedMemory(size));
        diff_.reset(new SyncedMemory(size));
      }
      data_->set_gpu_data(data);
    }
    
    template <typename Dtype>
    const Dtype* Blob<Dtype>::cpu_diff() const {    //修改blob中梯度在cpu上的指针
      CHECK(diff_);
      return (const Dtype*)diff_->cpu_data();
    }
    
    template <typename Dtype>
    const Dtype* Blob<Dtype>::gpu_diff() const {    //修改blob中梯度在gpu上的指针
      CHECK(diff_);
      return (const Dtype*)diff_->gpu_data();
    }
    
    template <typename Dtype>
    Dtype* Blob<Dtype>::mutable_cpu_data() {        //返回blob中数据在cpu上的指针(数据可修改)
      CHECK(data_);
      return static_cast<Dtype*>(data_->mutable_cpu_data());
    }
    
    template <typename Dtype>
    Dtype* Blob<Dtype>::mutable_gpu_data() {        //返回blob中数据在gpu上的指针(数据可修改)
      CHECK(data_);
      return static_cast<Dtype*>(data_->mutable_gpu_data());
    }
    
    template <typename Dtype>
    Dtype* Blob<Dtype>::mutable_cpu_diff() {        //返回blob中梯度在cpu上的指针(数据可修改)
      CHECK(diff_);
      return static_cast<Dtype*>(diff_->mutable_cpu_data());
    }
    
    template <typename Dtype>
    Dtype* Blob<Dtype>::mutable_gpu_diff() {        //返回blob中梯度在gpu上的指针(数据可修改)
      CHECK(diff_);
      return static_cast<Dtype*>(diff_->mutable_gpu_data());
    }
    
    template <typename Dtype>
    void Blob<Dtype>::ShareData(const Blob& other) {  //共享数据,将当前blob的数据指针指向other中的数据
      CHECK_EQ(count_, other.count());    //检查当前blob中数据大小与other中数据的大小是否一致
      data_ = other.data();
    }
    
    template <typename Dtype>
    void Blob<Dtype>::ShareDiff(const Blob& other) {  //共享梯度,将当前blob的梯度指针指向other中的梯度
      CHECK_EQ(count_, other.count());
      diff_ = other.diff();
    }
    
    // The "update" method is used for parameter blobs in a Net, which are stored
    // as Blob<float> or Blob<double> -- hence we do not define it for
    // Blob<int> or Blob<unsigned int>.
    template <> void Blob<unsigned int>::Update() { NOT_IMPLEMENTED; }
    template <> void Blob<int>::Update() { NOT_IMPLEMENTED; }
    
    //使用梯度更新当前的数据
    //caffe_axpy()和caffe_gpu_axpy()分别为cpu和gpu上的计算函数,使用了BLAS库
    template <typename Dtype>
    void Blob<Dtype>::Update() {
      // We will perform update based on where the data is located.
      switch (data_->head()) {          //当前数据的状态
      case SyncedMemory::HEAD_AT_CPU:   //在cpu中
        // perform computation on CPU
        caffe_axpy<Dtype>(count_, Dtype(-1),
            static_cast<const Dtype*>(diff_->cpu_data()),
            static_cast<Dtype*>(data_->mutable_cpu_data()));  //运用梯度,data_ = Dtype(-1) * diff_ + data_
        break;
      case SyncedMemory::HEAD_AT_GPU:
      case SyncedMemory::SYNCED:
    #ifndef CPU_ONLY
        // perform computation on GPU
        caffe_gpu_axpy<Dtype>(count_, Dtype(-1),
            static_cast<const Dtype*>(diff_->gpu_data()),
            static_cast<Dtype*>(data_->mutable_gpu_data()));  //gpu上的操作,data_ = Dtype(-1) * diff_ + data_
    #else
        NO_GPU;
    #endif
        break;
      default:
        LOG(FATAL) << "Syncedmem not initialized.";
      }
    }
    
    template <> unsigned int Blob<unsigned int>::asum_data() const {
      NOT_IMPLEMENTED;
      return 0;
    }
    
    template <> int Blob<int>::asum_data() const {
      NOT_IMPLEMENTED;
      return 0;
    }
    
    template <typename Dtype>
    Dtype Blob<Dtype>::asum_data() const {    //计算data_中元素的绝对值之和
      if (!data_) { return 0; }
      switch (data_->head()) {
      case SyncedMemory::HEAD_AT_CPU:
        return caffe_cpu_asum(count_, cpu_data());    //数据在cpu中,计算绝对值之和
      case SyncedMemory::HEAD_AT_GPU:
      case SyncedMemory::SYNCED:
    #ifndef CPU_ONLY
      {
        Dtype asum;
        caffe_gpu_asum(count_, gpu_data(), &asum);    //数据在gpu中
        return asum;
      }
    #else
        NO_GPU;
    #endif
      case SyncedMemory::UNINITIALIZED:   //未初始化,返回0
        return 0;
      default:
        LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
      }
      return 0;
    }
    
    template <> unsigned int Blob<unsigned int>::asum_diff() const {
      NOT_IMPLEMENTED;
      return 0;
    }
    
    template <> int Blob<int>::asum_diff() const {
      NOT_IMPLEMENTED;
      return 0;
    }
    
    template <typename Dtype>
    Dtype Blob<Dtype>::asum_diff() const {    //与asum_data类似,计算diff_中元素的绝对值之和
      if (!diff_) { return 0; }
      switch (diff_->head()) {
      case SyncedMemory::HEAD_AT_CPU:
        return caffe_cpu_asum(count_, cpu_diff());  //cpu
      case SyncedMemory::HEAD_AT_GPU:
      case SyncedMemory::SYNCED:
    #ifndef CPU_ONLY
      {
        Dtype asum;
        caffe_gpu_asum(count_, gpu_diff(), &asum);
        return asum;
      }
    #else
        NO_GPU;
    #endif
      case SyncedMemory::UNINITIALIZED:
        return 0;
      default:
        LOG(FATAL) << "Unknown SyncedMemory head state: " << diff_->head();
      }
      return 0;
    }
    
    template <> unsigned int Blob<unsigned int>::sumsq_data() const {
      NOT_IMPLEMENTED;
      return 0;
    }
    
    template <> int Blob<int>::sumsq_data() const {
      NOT_IMPLEMENTED;
      return 0;
    }
    
    template <typename Dtype>
    Dtype Blob<Dtype>::sumsq_data() const {     //与asum_data()类似,计算data_中元素的平方和
      Dtype sumsq;
      const Dtype* data;
      if (!data_) { return 0; }
      switch (data_->head()) {
      case SyncedMemory::HEAD_AT_CPU:
        data = cpu_data();
        sumsq = caffe_cpu_dot(count_, data, data);  //向量data与data的内积
        break;
      case SyncedMemory::HEAD_AT_GPU:
      case SyncedMemory::SYNCED:
    #ifndef CPU_ONLY
        data = gpu_data();
        caffe_gpu_dot(count_, data, data, &sumsq);  //gpu上计算
    #else
        NO_GPU;
    #endif
        break;
      case SyncedMemory::UNINITIALIZED:
        return 0;
      default:
        LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
      }
      return sumsq;
    }
    
    template <> unsigned int Blob<unsigned int>::sumsq_diff() const {
      NOT_IMPLEMENTED;
      return 0;
    }
    
    template <> int Blob<int>::sumsq_diff() const {
      NOT_IMPLEMENTED;
      return 0;
    }
    
    template <typename Dtype>
    Dtype Blob<Dtype>::sumsq_diff() const {     //与sumsq_data()类似,计算diff_中元素的平方和
      Dtype sumsq;
      const Dtype* diff;
      if (!diff_) { return 0; }
      switch (diff_->head()) {
      case SyncedMemory::HEAD_AT_CPU:
        diff = cpu_diff();
        sumsq = caffe_cpu_dot(count_, diff, diff);    //内积
        break;
      case SyncedMemory::HEAD_AT_GPU:
      case SyncedMemory::SYNCED:
    #ifndef CPU_ONLY
        diff = gpu_diff();
        caffe_gpu_dot(count_, diff, diff, &sumsq);
        break;
    #else
        NO_GPU;
    #endif
      case SyncedMemory::UNINITIALIZED:
        return 0;
      default:
        LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
      }
      return sumsq;
    }
    
    template <> void Blob<unsigned int>::scale_data(unsigned int scale_factor) {
      NOT_IMPLEMENTED;
    }
    
    template <> void Blob<int>::scale_data(int scale_factor) {
      NOT_IMPLEMENTED;
    }
    
    template <typename Dtype>
    void Blob<Dtype>::scale_data(Dtype scale_factor) {    //给data_数据乘上一个系数
      Dtype* data;
      if (!data_) { return; }
      switch (data_->head()) {
      case SyncedMemory::HEAD_AT_CPU:   //在cpu中
        data = mutable_cpu_data();      //数据在cpu上的指针
        caffe_scal(count_, scale_factor, data); //data = data * scale_factor (data中每个元素乘上scale_factor)
        return;
      case SyncedMemory::HEAD_AT_GPU:
      case SyncedMemory::SYNCED:
    #ifndef CPU_ONLY
        data = mutable_gpu_data();
        caffe_gpu_scal(count_, scale_factor, data); //gpu操作
        return;
    #else
        NO_GPU;
    #endif
      case SyncedMemory::UNINITIALIZED:
        return;
      default:
        LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
      }
    }
    
    template <> void Blob<unsigned int>::scale_diff(unsigned int scale_factor) {
      NOT_IMPLEMENTED;
    }
    
    template <> void Blob<int>::scale_diff(int scale_factor) {
      NOT_IMPLEMENTED;
    }
    
    template <typename Dtype>
    void Blob<Dtype>::scale_diff(Dtype scale_factor) {    //与scale_data类似,给diff_中的元素乘上一个系数
      Dtype* diff;
      if (!diff_) { return; }
      switch (diff_->head()) {
      case SyncedMemory::HEAD_AT_CPU:
        diff = mutable_cpu_diff();
        caffe_scal(count_, scale_factor, diff);   //diff = scale_factor * diff
        return;
      case SyncedMemory::HEAD_AT_GPU:
      case SyncedMemory::SYNCED:
    #ifndef CPU_ONLY
        diff = mutable_gpu_diff();
        caffe_gpu_scal(count_, scale_factor, diff);
        return;
    #else
        NO_GPU;
    #endif
      case SyncedMemory::UNINITIALIZED:
        return;
      default:
        LOG(FATAL) << "Unknown SyncedMemory head state: " << diff_->head();
      }
    }
    
    //判断当前blob的形状与BlobProto类型的other表示的形状是否一致
    //TODO BlobProto类定义在caffe.pb.h中,包含data和diff数据,但是暂时不了解它与blob的关系以及如何使用?
    template <typename Dtype>
    bool Blob<Dtype>::ShapeEquals(const BlobProto& other) {
      if (other.has_num() || other.has_channels() ||
          other.has_height() || other.has_width()) {    //如果other中设置了num/channels/height/width的等属性
        // Using deprecated 4D Blob dimensions --
        // shape is (num, channels, height, width).
        // Note: we do not use the normal Blob::num(), Blob::channels(), etc.
        // methods as these index from the beginning of the blob shape, where legacy
        // parameter blobs were indexed from the end of the blob shape (e.g., bias
        // Blob shape (1 x 1 x 1 x N), IP layer weight Blob shape (1 x 1 x M x N)).
        return shape_.size() <= 4 &&
               LegacyShape(-4) == other.num() &&
               LegacyShape(-3) == other.channels() &&   //LegacyShape(-3)表示shape_中的倒数第3个维度的大小
               LegacyShape(-2) == other.height() &&
               LegacyShape(-1) == other.width();        //shape的维度必须小于等于4,且n,c,h,w均与other的相等
      }
      vector<int> other_shape(other.shape().dim_size());    //创建vector变量,将other中的各个维度的大小存入
      for (int i = 0; i < other.shape().dim_size(); ++i) {
        other_shape[i] = other.shape().dim(i);          //第i个维度
      }
      return shape_ == other_shape;   //返回两者是否相等
    }
    
    //从source中拷贝数据至当前的blob中,copy_diff表示拷贝的是data_数据还是diff_数据
    //reshape表示当前blob是否需要进行reshape操作
    template <typename Dtype>
    void Blob<Dtype>::CopyFrom(const Blob& source, bool copy_diff, bool reshape) {
      if (source.count() != count_ || source.shape() != shape_) { //source中数据的大小和形状与当前blob的不一致
        if (reshape) {            //允许修改
          ReshapeLike(source);    //修改当前blob的形状
        } else {
          LOG(FATAL) << "Trying to copy blobs of different sizes.";   //形状不一致还不允许reshape,返回错误
        }
      }
      switch (Caffe::mode()) {    //当前运行的模式,cpu还是gpu模式
      case Caffe::GPU:
        if (copy_diff) {          //拷贝梯度diff_数据
          caffe_copy(count_, source.gpu_diff(),
              static_cast<Dtype*>(diff_->mutable_gpu_data()));  //将source的diff在gpu上的数据拷贝至当前blob的diff在gpu的显存中,拷贝大小为count_
        } else {
          caffe_copy(count_, source.gpu_data(),
              static_cast<Dtype*>(data_->mutable_gpu_data()));  //将source的data在gpu上的数据拷贝至当前blob的data在gpu的显存中,拷贝大小为count_
        }
        break;
      case Caffe::CPU:          //cpu模式
        if (copy_diff) {
          caffe_copy(count_, source.cpu_diff(),
              static_cast<Dtype*>(diff_->mutable_cpu_data()));  //将source的diff在cpu上的数据拷贝至当前blob的diff在cpu的内存中,拷贝大小为count_
        } else {
          caffe_copy(count_, source.cpu_data(),
              static_cast<Dtype*>(data_->mutable_cpu_data()));  //将source的data在cpu上的数据拷贝至当前blob的data在cpu的内存中,拷贝大小为count_
        }
        break;
      default:
        LOG(FATAL) << "Unknown caffe mode.";  //未知模式返回错误
      }
    }
    
    //从BlobProto类型的变量中拷贝data和diff数据
    //如果reshape为true,需要保证当前blob与proto的总体数据大小一致,
    //如果reshape为false,需要保证当前blob与proto的中数据的各个维度的大小一致
    template <typename Dtype>
    void Blob<Dtype>::FromProto(const BlobProto& proto, bool reshape) {
      if (reshape) {        //需要reshape
        vector<int> shape;  //将proto的各个维度保存在shape中
        if (proto.has_num() || proto.has_channels() ||
            proto.has_height() || proto.has_width()) {
          // Using deprecated 4D Blob dimensions --
          // shape is (num, channels, height, width).
          shape.resize(4);  //只有4个维度
          shape[0] = proto.num();
          shape[1] = proto.channels();
          shape[2] = proto.height();
          shape[3] = proto.width();
        } else {
          shape.resize(proto.shape().dim_size());   //保存所有维度的大小
          for (int i = 0; i < proto.shape().dim_size(); ++i) {
            shape[i] = proto.shape().dim(i);
          }
        }
        Reshape(shape);   //修改当前blob的形状
      } else {
        CHECK(ShapeEquals(proto)) << "shape mismatch (reshape not set)";  //不需reshape,检查各个维度大小是否一致
      }
      // copy data
      Dtype* data_vec = mutable_cpu_data();           //当前blob中data的指针
      if (proto.double_data_size() > 0) {             //如果是双精度数据,double类型
        CHECK_EQ(count_, proto.double_data_size());   //检查数据大小是否一致
        for (int i = 0; i < count_; ++i) {
          data_vec[i] = proto.double_data(i);         //拷贝
        }
      } else {                                        //单精度数据,float类型
        CHECK_EQ(count_, proto.data_size());          //检查大小
        for (int i = 0; i < count_; ++i) {
          data_vec[i] = proto.data(i);    //复制
        }
      }
      if (proto.double_diff_size() > 0) {             //操作与data_的类似,拷贝diff数据至当前blob的diff_中
        CHECK_EQ(count_, proto.double_diff_size());
        Dtype* diff_vec = mutable_cpu_diff();
        for (int i = 0; i < count_; ++i) {
          diff_vec[i] = proto.double_diff(i);
        }
      } else if (proto.diff_size() > 0) {
        CHECK_EQ(count_, proto.diff_size());
        Dtype* diff_vec = mutable_cpu_diff();
        for (int i = 0; i < count_; ++i) {
          diff_vec[i] = proto.diff(i);
        }
      }
    }
    
    //将当前blob的data数据保存在BlobProto类型的变量中(双精度数据区),write_diff表示是否需要保存diff数据
    template <>
    void Blob<double>::ToProto(BlobProto* proto, bool write_diff) const {
      proto->clear_shape();       //清空proto中的shape数据
      for (int i = 0; i < shape_.size(); ++i) {
        proto->mutable_shape()->add_dim(shape_[i]); //将当前blob数据的形状保存在proto中
      }
      proto->clear_double_data();   //清空之前的data和diff数据(双精度类型)
      proto->clear_double_diff();
      const double* data_vec = cpu_data();    //当前blob的data在cpu上的数据
      for (int i = 0; i < count_; ++i) {
        proto->add_double_data(data_vec[i]);  //添加进proto
      }
      if (write_diff) {     //需要保存diff数据
        const double* diff_vec = cpu_diff();
        for (int i = 0; i < count_; ++i) {
          proto->add_double_diff(diff_vec[i]);    //写入proto中
        }
      }
    }
    
    //与上面的Blob<double>::ToProto()类似,此处是将blob中的数据写入proto的单精度数据区
    template <>
    void Blob<float>::ToProto(BlobProto* proto, bool write_diff) const {
      proto->clear_shape();
      for (int i = 0; i < shape_.size(); ++i) {
        proto->mutable_shape()->add_dim(shape_[i]);
      }
      proto->clear_data();
      proto->clear_diff();
      const float* data_vec = cpu_data();
      for (int i = 0; i < count_; ++i) {
        proto->add_data(data_vec[i]);   //存入float类型的数据区
      }
      if (write_diff) {
        const float* diff_vec = cpu_diff();
        for (int i = 0; i < count_; ++i) {
          proto->add_diff(diff_vec[i]);
        }
      }
    }
    

    blob.hpp源码

    const int kMaxBlobAxes = 32;    //数据维度个数的最大值,shape_.size()不能超过改值
    
    namespace caffe {
    
    /**
     * @brief A wrapper around SyncedMemory holders serving as the basic
     *        computational unit through which Layer%s, Net%s, and Solver%s
     *        interact.
     *
     * TODO(dox): more thorough description.
     */
    template <typename Dtype>
    class Blob {
     public:
      Blob()
           : data_(), diff_(), count_(0), capacity_(0) {}
    
      /// @brief Deprecated; use <code>Blob(const vector<int>& shape)</code>.
      explicit Blob(const int num, const int channels, const int height,
          const int width);
      explicit Blob(const vector<int>& shape);
    
      /// @brief Deprecated; use <code>Reshape(const vector<int>& shape)</code>.
      void Reshape(const int num, const int channels, const int height,
          const int width);
      /**
       * @brief Change the dimensions of the blob, allocating new memory if
       *        necessary.
       *
       * This function can be called both to create an initial allocation
       * of memory, and to adjust the dimensions of a top blob during Layer::Reshape
       * or Layer::Forward. When changing the size of blob, memory will only be
       * reallocated if sufficient memory does not already exist, and excess memory
       * will never be freed.
       *
       * Note that reshaping an input blob and immediately calling Net::Backward is
       * an error; either Net::Forward or Net::Reshape need to be called to
       * propagate the new input shape to higher layers.
       */
      void Reshape(const vector<int>& shape);
      void Reshape(const BlobShape& shape);
      void ReshapeLike(const Blob& other);
      inline string shape_string() const {    //输出包含各维度信息的字符串,"n c h w (count_)"
        ostringstream stream;
        for (int i = 0; i < shape_.size(); ++i) {
          stream << shape_[i] << " ";
        }
        stream << "(" << count_ << ")";
        return stream.str();
      }
      inline const vector<int>& shape() const { return shape_; }    //返回blob数据的形状
      /**
       * @brief Returns the dimension of the index-th axis (or the negative index-th
       *        axis from the end, if index is negative).
       *
       * @param index the axis index, which may be negative as it will be
       *        "canonicalized" using CanonicalAxisIndex.
       *        Dies on out of range index.
       */
      inline int shape(int index) const {
        return shape_[CanonicalAxisIndex(index)];     //返回blob数据的第index维的大小
      }
      inline int num_axes() const { return shape_.size(); }   //返回数据的维度的个数
      inline int count() const { return count_; }     //返回数据的总体大小
    
      /**
       * @brief Compute the volume of a slice; i.e., the product of dimensions
       *        among a range of axes.
       *
       * @param start_axis The first axis to include in the slice.
       *
       * @param end_axis The first axis to exclude from the slice.
       */
      inline int count(int start_axis, int end_axis) const {    //返回第start_axis维到第end_axis维之间的数据的大小
        CHECK_LE(start_axis, end_axis);       //检查 start_axis <= end_axis
        CHECK_GE(start_axis, 0);              //检查 start_axis >= 0
        CHECK_GE(end_axis, 0);                //检查 end_axis >= 0
        CHECK_LE(start_axis, num_axes());     //检查 start_axis <= shape_.size()
        CHECK_LE(end_axis, num_axes());       //检查 end_axis <= shape_.size()
        int count = 1;
        for (int i = start_axis; i < end_axis; ++i) {
          count *= shape(i);    //积
        }
        return count;
      }
      /**
       * @brief Compute the volume of a slice spanning from a particular first
       *        axis to the final axis.
       *
       * @param start_axis The first axis to include in the slice.
       */
      inline int count(int start_axis) const {  //返回第start_axis维到最后维之间的数据的大小
        return count(start_axis, num_axes());
      }
    
      /**
       * @brief Returns the 'canonical' version of a (usually) user-specified axis,
       *        allowing for negative indexing (e.g., -1 for the last axis).
       *
       * @param axis_index the axis index.
       *        If 0 <= index < num_axes(), return index.
       *        If -num_axes <= index <= -1, return (num_axes() - (-index)),
       *        e.g., the last axis index (num_axes() - 1) if index == -1,
       *        the second to last if index == -2, etc.
       *        Dies on out of range index.
       */
      inline int CanonicalAxisIndex(int axis_index) const {   //输入axis_index(可正可负),返回axis_index在shape_对应的实际索引
        CHECK_GE(axis_index, -num_axes())
            << "axis " << axis_index << " out of range for " << num_axes()
            << "-D Blob with shape " << shape_string();       //检查 axis_index >= -num_axes()
        CHECK_LT(axis_index, num_axes())
            << "axis " << axis_index << " out of range for " << num_axes()
            << "-D Blob with shape " << shape_string();       //检查 axis_index < num_axes()
        if (axis_index < 0) {
          return axis_index + num_axes();   //为负数时,表示倒数第-axis_index个,计算对应的正向时的索引
        }
        return axis_index;    //正数不处理,直接返回
      }
    
      /// @brief Deprecated legacy shape accessor num: use shape(0) instead.
      inline int num() const { return LegacyShape(0); }       //num()/channels()/height()/width()这四个函数已不建议使用,使用shape(i)替代
      /// @brief Deprecated legacy shape accessor channels: use shape(1) instead.
      inline int channels() const { return LegacyShape(1); }
      /// @brief Deprecated legacy shape accessor height: use shape(2) instead.
      inline int height() const { return LegacyShape(2); }
      /// @brief Deprecated legacy shape accessor  use shape(3) instead.
      inline int width() const { return LegacyShape(3); }
      inline int LegacyShape(int index) const {       //返回shape_中的第index个维度的大小,index可以为负数
        CHECK_LE(num_axes(), 4)
            << "Cannot use legacy accessors on Blobs with > 4 axes.";   //blob中数据的维度超过4时,不能使用这种方式
        CHECK_LT(index, 4);     //检查index的范围
        CHECK_GE(index, -4);
        //对于小于4维的数据,如果给出的索引超过数据的维度范围但是在4范围内,那么返回1.相当于将数据缺少的维度大小用1填充
        if (index >= num_axes() || index < -num_axes()) {
          // Axis is out of range, but still in [0, 3] (or [-4, -1] for reverse
          // indexing) -- this special case simulates the one-padding used to fill
          // extraneous axes of legacy blobs.
          return 1;
        }
        return shape(index);
      }
    
      inline int offset(const int n, const int c = 0, const int h = 0, const int w = 0) const { //返回第(n,c,h,w)个数据的偏移位置
        CHECK_GE(n, 0);         //对输入参数进行检查
        CHECK_LE(n, num());
        CHECK_GE(channels(), 0);
        CHECK_LE(c, channels());
        CHECK_GE(height(), 0);
        CHECK_LE(h, height());
        CHECK_GE(width(), 0);
        CHECK_LE(w, width());
        return ((n * channels() + c) * height() + h) * width() + w;
      }
    
      inline int offset(const vector<int>& indices) const {   //同理,返回indices中指示的数据的偏移位置
        CHECK_LE(indices.size(), num_axes());     //检查indices的长度是否与shape_匹配
        int offset = 0;
        for (int i = 0; i < num_axes(); ++i) {
          offset *= shape(i);
          if (indices.size() > i) {
            CHECK_GE(indices[i], 0);
            CHECK_LT(indices[i], shape(i));
            offset += indices[i];     //从高维开始,累加得到其偏移位置
          }
        }
        return offset;
      }
      /**
       * @brief Copy from a source Blob.
       *
       * @param source the Blob to copy from
       * @param copy_diff if false, copy the data; if true, copy the diff
       * @param reshape if false, require this Blob to be pre-shaped to the shape
       *        of other (and die otherwise); if true, Reshape this Blob to other's
       *        shape if necessary
       */
      void CopyFrom(const Blob<Dtype>& source, bool copy_diff = false,
          bool reshape = false);
    
      inline Dtype data_at(const int n, const int c, const int h,   //返回data中(n,c,h,w)处的数据值
          const int w) const {
        return cpu_data()[offset(n, c, h, w)];
      }
    
      inline Dtype diff_at(const int n, const int c, const int h,   //返回diff中(n,c,h,w)处的数据值
          const int w) const {
        return cpu_diff()[offset(n, c, h, w)];
      }
    
      inline Dtype data_at(const vector<int>& index) const {        //返回data中index处的数据值
        return cpu_data()[offset(index)];
      }
    
      inline Dtype diff_at(const vector<int>& index) const {        //返回diff中index处的数据值
        return cpu_diff()[offset(index)];
      }
    
      inline const shared_ptr<SyncedMemory>& data() const {         //返回存放data在cpu上的数据指针
        CHECK(data_);
        return data_;
      }
    
      inline const shared_ptr<SyncedMemory>& diff() const {         //返回存放diff在cpu上的数据指针
        CHECK(diff_);
        return diff_;
      }
    
      const Dtype* cpu_data() const;
      void set_cpu_data(Dtype* data);
      const int* gpu_shape() const;
      const Dtype* gpu_data() const;
      void set_gpu_data(Dtype* data);
      const Dtype* cpu_diff() const;
      const Dtype* gpu_diff() const;
      Dtype* mutable_cpu_data();
      Dtype* mutable_gpu_data();
      Dtype* mutable_cpu_diff();
      Dtype* mutable_gpu_diff();
      void Update();
      void FromProto(const BlobProto& proto, bool reshape = true);
      void ToProto(BlobProto* proto, bool write_diff = false) const;
    
      /// @brief Compute the sum of absolute values (L1 norm) of the data.
      Dtype asum_data() const;
      /// @brief Compute the sum of absolute values (L1 norm) of the diff.
      Dtype asum_diff() const;
      /// @brief Compute the sum of squares (L2 norm squared) of the data.
      Dtype sumsq_data() const;
      /// @brief Compute the sum of squares (L2 norm squared) of the diff.
      Dtype sumsq_diff() const;
    
      /// @brief Scale the blob data by a constant factor.
      void scale_data(Dtype scale_factor);
      /// @brief Scale the blob diff by a constant factor.
      void scale_diff(Dtype scale_factor);
    
      /**
       * @brief Set the data_ shared_ptr to point to the SyncedMemory holding the
       *        data_ of Blob other -- useful in Layer%s which simply perform a copy
       *        in their Forward pass.
       *
       * This deallocates the SyncedMemory holding this Blob's data_, as
       * shared_ptr calls its destructor when reset with the "=" operator.
       */
      void ShareData(const Blob& other);
      /**
       * @brief Set the diff_ shared_ptr to point to the SyncedMemory holding the
       *        diff_ of Blob other -- useful in Layer%s which simply perform a copy
       *        in their Forward pass.
       *
       * This deallocates the SyncedMemory holding this Blob's diff_, as
       * shared_ptr calls its destructor when reset with the "=" operator.
       */
      void ShareDiff(const Blob& other);
    
      bool ShapeEquals(const BlobProto& other);
    
     protected:
      shared_ptr<SyncedMemory> data_;       //存放数据,用于前向计算
      shared_ptr<SyncedMemory> diff_;       //存放梯度数据,用于反向传播
      shared_ptr<SyncedMemory> shape_data_; //数据的各维度大小
      vector<int> shape_;                   //数据的各维度大小,值与shape_data_中的各个值一致
      
      //capacity_表示data.size()/sizeof(Dtype), 表示data_或diff_中能存放的数据的最大个数
      //count_表示当前data_或diff_中有效的数据的个数,总有 count_ <= capacity_
      int count_;       //当前数据的总个数(各个维度的相乘)
      int capacity_;    //data_或diff_中能容纳的数据的大小
    
      DISABLE_COPY_AND_ASSIGN(Blob);
    };  // class Blob
    
    }  // namespace caffe
    

    小结

    1. 网络上关于count_capacity_的说明比较模糊,但是查看blob的Reshape()函数便可发现,两者一般情况下是相等的,但是出现reshape操作时,count_的值一定被修改,count_ = new_shape[0] * new_shape[1] * ... * new_shape[new_shape.size() - 1],而capacity_只有在capacity_ <= count_的时候才会修改,同时data_和diff_会重新申请内存/显存。因此他们的实际关系始终为capacity_ >= count_,并且始终有**capacity_ = data.size() / sizeof(Dtype) ,表示SyncedMemory类型的data_/diff_中能存放的最大数据个数(容量)。以及count_ = shape(0) * shape(1) * ... * shape(shape_.size()-1) **,表示data_中实际有效的数据的个数。
    2. 代码中有部分内容(如BlobProto类的作用和与Blob的关系)笔者还不太了解,待后续更新。

    Caffe的源码笔者是第一次阅读,一边阅读一边记录,对代码的理解和分析可能会存在错误或遗漏,希望各位读者批评指正,谢谢支持!

  • 相关阅读:
    centos 7 开放端口
    删除mysql 表中重复的数据
    约瑟夫问题
    Technocup 2020 Elimination Round 3题解
    DISCO Presents Discovery Channel Code Contest 2020 Qual题解
    Comet OJ
    Berlekamp-Massey算法
    CH定理与线性递推
    2020集训队作业板刷记录(一)
    模拟费用流
  • 原文地址:https://www.cnblogs.com/Relu110/p/11966002.html
Copyright © 2020-2023  润新知