• BZOJ 2243 染色 | 树链剖分模板题进阶版


    BZOJ 2243 染色 | 树链剖分模板题进阶版

    这道题呢~就是个带区间修改的树链剖分~
    如何区间修改?跟树链剖分的区间询问一个道理,再加上线段树的区间修改就好了。
    这道题要注意的是,无论是线段树上还是原树上,把两个区间的信息合并的时候,要注意中间相邻两个颜色是否相同。

    这代码好长啊啊啊啊
    幸好一次过了不然我估计永远也De不出来

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    typedef long long ll;
    #define space putchar(' ')
    #define enter putchar('
    ')
    template <class T>
    void read(T &x){
        char c;
        bool op = 0;
        while(c = getchar(), c < '0' || c > '9')
            if(c == '-') op = 1;
        x = c - '0';
        while(c = getchar(), c >= '0' && c <= '9')
            x = x * 10 + c - '0';
        if(op) x = -x;
    }
    template <class T>
    void write(T x){
        if(x < 0) putchar('-'), x = -x;
        if(x >= 10) write(x / 10);
        putchar('0' + x % 10);
    }
    char readchar(){
        char c;
        while(c = getchar(), c < 'A' || c > 'Z');
        return c;
    }
    const int N = 100005;
    int n, m;
    int ecnt, adj[N], nxt[2*N], go[2*N];
    int tot, pos[N], idx[N], fa[N], son[N], sze[N], top[N], dep[N], val[N];
    int le[4*N], ri[4*N], data[4*N], lazy[4*N];
    void add(int u, int v){
        go[++ecnt] = v;
        nxt[ecnt] = adj[u];
        adj[u] = ecnt;
    }
    void pushup(int k){
        data[k] = data[k << 1] + data[k << 1 | 1];
        if(ri[k << 1] == le[k << 1 | 1]) data[k]--;
        le[k] = le[k << 1], ri[k] = ri[k << 1 | 1];
    }
    void pushdown(int k){
        if(lazy[k] == -1) return;
        lazy[k << 1] = lazy[k << 1 | 1] = lazy[k];
        le[k << 1] = le[k << 1 | 1] = lazy[k];
        ri[k << 1] = ri[k << 1 | 1] = lazy[k];
        data[k << 1] = data[k << 1 | 1] = 1;
        lazy[k] = -1;
    }
    void build(int k, int l, int r){
        lazy[k] = -1;
        if(l == r) return (void)(data[k] = 1, le[k] = ri[k] = val[idx[l]]);
        int mid = (l + r) >> 1;
        build(k << 1, l, mid);
        build(k << 1 | 1, mid + 1, r);
        pushup(k);
    }
    void change(int k, int l, int r, int ql, int qr, int x){
        if(ql <= l && qr >= r) return (void)(data[k] = 1, le[k] = ri[k] = lazy[k] = x);
        pushdown(k);
        int mid = (l + r) >> 1;
        if(ql <= mid) change(k << 1, l, mid, ql, qr, x);
        if(qr > mid) change(k << 1 | 1, mid + 1, r, ql, qr, x);
        pushup(k);
    }
    int query(int k, int l, int r, int ql, int qr){
        if(ql <= l && qr >= r) return data[k];
        pushdown(k);
        int mid = (l + r) >> 1;
        if(qr <= mid) return query(k << 1, l, mid, ql, qr);
        if(ql > mid) return query(k << 1 | 1, mid + 1, r, ql, qr);
        return query(k << 1, l, mid, ql, qr) + query(k << 1 | 1, mid + 1, r, ql, qr) - (ri[k << 1] == le[k << 1 | 1]);
    }
    int getcol(int k, int l, int r, int p){
        if(lazy[k] != -1) return lazy[k];
        if(l == r) return le[k];
        int mid = (l + r) >> 1;
        if(pos[p] <= mid) return getcol(k << 1, l, mid, p);
        else return getcol(k << 1 | 1, mid + 1, r, p);
    }
    void path_change(int u, int v, int x){
        if(top[u] == top[v]){
            if(pos[u] > pos[v]) swap(u, v);
            change(1, 1, n, pos[u], pos[v], x);
            return;
        }
        if(dep[top[u]] > dep[top[v]]) swap(u, v);
        change(1, 1, n, pos[top[v]], pos[v], x);
        path_change(u, fa[top[v]], x);
    }
    int path_query(int u, int v){
        if(top[u] == top[v]){
            if(pos[u] > pos[v]) swap(u, v);
            return query(1, 1, n, pos[u], pos[v]);
        }
        if(dep[top[u]] > dep[top[v]]) swap(u, v);
        int same = (getcol(1, 1, n, top[v]) == getcol(1, 1, n, fa[top[v]]));
        return path_query(fa[top[v]], u) + query(1, 1, n, pos[top[v]], pos[v]) - same;
    }
    void init(){
        static int que[N], qr;
        que[qr = 1] = 1;
        for(int ql = 1, u; ql <= qr; ql++){
            u = que[ql], sze[u] = 1;
            for(int e = adj[u], v; e; e = nxt[e])
                if(v = go[e], v != fa[u])
                    fa[v] = u, dep[v] = dep[u] + 1, que[++qr] = v;
        }
        for(int ql = qr, u; ql; ql--){
            u = que[ql];
            sze[fa[u]] += sze[u];
            if(sze[u] >= sze[son[fa[u]]]) son[fa[u]] = u;
        }
        for(int ql = 1, u; ql <= qr; ql++)
            if(!top[u = que[ql]])
                for(int v = u; v; v = son[v])
                    idx[++tot] = v, pos[v] = tot, top[v] = u;
        build(1, 1, n);
    }
    int main(){
        read(n), read(m);
        for(int i = 1; i <= n; i++)
            read(val[i]);
        for(int i = 1, u, v; i < n; i++)
            read(u), read(v), add(u, v), add(v, u);
        init();
        char op;
        int a, b, c;
        while(m--){
            op = readchar(), read(a), read(b);
            if(op == 'Q') write(path_query(a, b)), enter;
            else read(c), path_change(a, b, c);
        }
        return 0;
    }
    
  • 相关阅读:
    二叉树的构造与遍历
    最长公共子序列
    Python爬虫与数据图表的实现
    降维实例之主成分分析
    数据集之转换器以及估计器
    机器学习算法分类以及开发流程
    数据的降维之特征选择及主成分分析
    特征工程之归一化及标准化
    文本tfidf
    文本特征抽取
  • 原文地址:https://www.cnblogs.com/RabbitHu/p/BZOJ2243.html
Copyright © 2020-2023  润新知