Sequence II
Time Limit: 9000/4500 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 849 Accepted Submission(s): 204
Problem Description
Mr. Frog has an integer sequence of length n, which can be denoted as a1,a2,⋯,an There are m queries.
In the i-th query, you are given two integers li and ri. Consider the subsequence ali,ali+1,ali+2,⋯,ari.
We can denote the positions(the positions according to the original sequence) where an integer appears first in this subsequence as p(i)1,p(i)2,⋯,p(i)ki (in ascending order, i.e.,p(i)1<p(i)2<⋯<p(i)ki).
Note that ki is the number of different integers in this subsequence. You should output p(i)⌈ki2⌉for the i-th query.
In the i-th query, you are given two integers li and ri. Consider the subsequence ali,ali+1,ali+2,⋯,ari.
We can denote the positions(the positions according to the original sequence) where an integer appears first in this subsequence as p(i)1,p(i)2,⋯,p(i)ki (in ascending order, i.e.,p(i)1<p(i)2<⋯<p(i)ki).
Note that ki is the number of different integers in this subsequence. You should output p(i)⌈ki2⌉for the i-th query.
Input
In the first line of input, there is an integer T (T≤2) denoting the number of test cases.
Each test case starts with two integers n (n≤2×105) and m (m≤2×105). There are n integers in the next line, which indicate the integers in the sequence(i.e., a1,a2,⋯,an,0≤ai≤2×105).
There are two integers li and ri in the following m lines.
However, Mr. Frog thought that this problem was too young too simple so he became angry. He modified each query to l‘i,r‘i(1≤l‘i≤n,1≤r‘i≤n). As a result, the problem became more exciting.
We can denote the answers as ans1,ans2,⋯,ansm. Note that for each test case ans0=0.
You can get the correct input li,ri from what you read (we denote them as l‘i,r‘i)by the following formula:
Each test case starts with two integers n (n≤2×105) and m (m≤2×105). There are n integers in the next line, which indicate the integers in the sequence(i.e., a1,a2,⋯,an,0≤ai≤2×105).
There are two integers li and ri in the following m lines.
However, Mr. Frog thought that this problem was too young too simple so he became angry. He modified each query to l‘i,r‘i(1≤l‘i≤n,1≤r‘i≤n). As a result, the problem became more exciting.
We can denote the answers as ans1,ans2,⋯,ansm. Note that for each test case ans0=0.
You can get the correct input li,ri from what you read (we denote them as l‘i,r‘i)by the following formula:
li=min{(l‘i+ansi−1) mod n+1,(r‘i+ansi−1) mod n+1}
ri=max{(l‘i+ansi−1) mod n+1,(r‘i+ansi−1) mod n+1}
Output
You should output one single line for each test case.
For each test case, output one line “Case #x: p1,p2,⋯,pm”, where x is the case number (starting from 1) and p1,p2,⋯,pm is the answer.
For each test case, output one line “Case #x: p1,p2,⋯,pm”, where x is the case number (starting from 1) and p1,p2,⋯,pm is the answer.
Sample Input
2
5 2
3 3 1 5 4
2 2
4 4
5 2
2 5 2 1 2
2 3
2 4
Sample Output
Case #1: 3 3
Case #2: 3 1
Hint
/* hdu 5919 主席树(区间不同数的个数 + 区间第k大) problem: 给你n个数字,和m个查询. 将[l,r]之间数第一次出现的位置信息弄成一个新的数组,然后找出其中k/2大的数.(k为位置的数量) solve: 通过主席树能够找出[l,r]之间有多少个不同的数,然后利用再用一个查询找出第k大的即可. (都是类似与线段树的操作, T[i]存的是[1,n]的信息, 尽管说的只是[i,n] ,只是[1,i-1]的还没更新而已. 所以查询的时候出了点问题) hhh-2016-10-07 16:48:19 */ #include <algorithm> #include <iostream> #include <cstdlib> #include <stdio.h> #include <cstring> #include <vector> #include <math.h> #include <queue> #include <set> #include <map> //#define lson i<<1 //#define rson i<<1|1 #define ll long long #define clr(a,b) memset(a,b,sizeof(a)) using namespace std; const int maxn = 200100; const int N = maxn * 100; template<class T> void read(T&num) { char CH; bool F=false; for(CH=getchar(); CH<'0'||CH>'9'; F= CH=='-',CH=getchar()); for(num=0; CH>='0'&&CH<='9'; num=num*10+CH-'0',CH=getchar()); F && (num=-num); } int stk[70], tp; template<class T> inline void print(T p) { if(!p) { puts("0"); return; } while(p) stk[++ tp] = p%10, p/=10; while(tp) putchar(stk[tp--] + '0'); putchar(' '); } int lson[N],rson[N],c[N]; int a[maxn],T[maxn]; int tot,n,m; int build(int l,int r) { int root = tot++; c[root ] = 0; if(l != r) { int mid = (l+r)>>1; lson[root] = build(l,mid); rson[root] = build(mid+1,r); } return root; } int update(int root,int pos,int val) { int newroot = tot ++ ,tmp= newroot; c[newroot] = c[root] + val; int l = 1,r = n; while(l < r) { int mid = (l + r) >> 1; if(pos <= mid) { lson[newroot] = tot++; rson[newroot] = rson[root]; newroot = lson[newroot] ; root = lson[root]; r = mid; } else { lson[newroot] = lson[root],rson[newroot] = tot++; newroot = rson[newroot],root = rson[root]; l = mid + 1; } c[newroot] = c[root] + val; } return tmp; } int query(int root,int pos) { int cnt = 0; int l = 1,r = n; while(pos < r) { int mid = (l + r) >> 1; if(pos <= mid) { root = lson[root]; r = mid; } else { cnt += c[lson[root]]; root = rson[root]; l = mid + 1; } } return cnt + c[root]; } int Find(int root,int k) { int l = 1,r = n; while(l <= r) { int mid = (l + r) >> 1; if(l == r) return l; if(c[lson[root]] >= k) { root = lson[root]; r = mid; } else { k -= c[lson[root]]; root = rson[root]; l = mid +1 ; } } } int main() { int t,cas = 1; // freopen("in.txt","r",stdin); read(t); while(t--) { tot = 0; read(n),read(m); for(int i = 1; i <= n; i++) scanf("%d",&a[i]); T[n + 1] = build(1,n); map<int,int> mp; for(int i = n; i >= 1; i--) { if(mp.find(a[i]) == mp.end()) { T[i] = update(T[i + 1],i,1); } else { int tp = update(T[i+1],mp[a[i]],-1); T[i] = update(tp,i,1); } mp[a[i]] = i; } int ans = 0; int l,r; printf("Case #%d:",cas++); for(int i = 1; i <= m; i++) { read(l),read(r); // cout << l <<" " <<r << endl; l = (l + ans) % n + 1; r = (r + ans)%n + 1; if(l > r) swap(l,r); int num = (query(T[l],r)+1) >> 1; // if(!num) num = 1; ans = Find(T[l],num); printf(" %d",ans); } printf(" "); } return 0; }