• 饥饿的小易(枚举+广度优先遍历(BFS))


    题目描述

    小易总是感觉饥饿,所以作为章鱼的小易经常出去寻找贝壳吃。最开始小易在一个初始位置x_0。对于小易所处的当前位置x,他只能通过神秘的力量移动到 4 * x + 3或者8 * x + 7。因为使用神秘力量要耗费太多体力,所以它只能使用神秘力量最多100,000次。贝壳总生长在能被1,000,000,007整除的位置(比如:位置0,位置1,000,000,007,位置2,000,000,014等)。小易需要你帮忙计算最少需要使用多少次神秘力量就能吃到贝壳。

    输入描述:

    输入一个初始位置x_0,范围在1到1,000,000,006

    输出描述:

    输出小易最少需要使用神秘力量的次数,如果使用次数使用完还没找到贝壳,则输出-1

    示例1

    输入

    125000000

    输出

     1

    分析:

      这道题我们只能把每步都分为两种情况,使用神秘力量1(4 * x + 3)和使用神秘力量2(8 * x + 7)。从出发点开始枚举,使用广度优先遍历算法(BFS)。由于贝壳出现在能被1,000,000,007整除的位置,所以我们只需要考虑%1000000007后的结果。我们要记录初次到达某个位置时使用了几次神秘力量。

    第一种方法:

    from collections import deque
    mod = 1e9+7
    n = int(raw_input().strip())
    currentPos = n%mod
    power = {}
    power[currentPos] = 0
    d = deque()
    d.append(currentPos)
    flag = False
    while len(d):
        currentPos = d.popleft()
        if power[currentPos] > 100000:
            break
        if currentPos == 0:
            flag = True
            break
        nextPos = (4*currentPos+3)%mod
        if nextPos not in power:
            power[nextPos] = power[currentPos]+1
            d.append(nextPos)
        nextPos = (8*currentPos+7)%mod
        if nextPos not in power:
            power[nextPos] = power[currentPos]+1
            d.append(nextPos)
    if flag:
        print(power[currentPos])
    else:
        print(-1)

    第二种方法:

    观察变换形式,并做变形:

    4x+3=4(x+1)-1

    8x+7=8(x+1)-1

    如果多层嵌套呢?

    y=4x+3

    8y+7=8((4(x+1)-1)+1)-1=8(4(x+1))-1=32(x+1)-1

    如果你多枚举一些,就会发现,能变换出的数的形式都是:

    a(x+1)-1,其中a是2的>=2的幂次数(4、8、16、32、64、……)

    我们可以利用这个特点

    考虑直接枚举那个a,从2^2一直到……等等,最大是2的多少次?

    答:直接考虑最大情况,每次变换都选择8x+7那种,也就是,每次a乘上8,也就是说,最坏是(2^3)^100000=2^300000次

    所以,枚举a,从2^2次,一直到2^300000次

    然后,对每个a检查一下,乘起来结果%1e9+7是不是0,如果是0,说明100000次之内有解

    ——问:那最小要执行几次变换?

    答:我们直接贪心,尽量让a乘8(乘2次8和乘3次4一样大,当然是乘8越多,变换次数越少)

    ——问:如果我发现a==2^5或a==2^4的时候满足要求,但是5和4才不能表示成3的倍数,怎么办?

    答:别忘了你手上还有4x+3的变换(就是a乘4的变换)

    对5这种情况,除以3余2,那刚好,用一次乘4的变换就行了

    对4这种情况,除以3余1,我们考虑,消去一个乘8的变换,用2个乘4的变换代替并补足。

    n = int(raw_input().strip())
    mod = int(1e9+7)
    ans = -1
    time = 4
    for i in range(1,300001):
        x = (n*time+time-1)%mod
        if x == 0:
            ans = (i+1)/3
            if (i+1)%3:
                ans += 1
            break
        time = (time*2)%mod
    print(ans)

    第二种方法要比第一种方法高效一点

    参考博客:

    http://blog.csdn.net/fcxxzux/article/details/52138964#t0

  • 相关阅读:
    PIL 和 pythonopencv 从内存字节码中读取图片并转为np.array格式
    【转载】 什么是元类
    【转载】 Py之cupy:cupy的简介、安装、使用方法之详细攻略
    【转载】 vscode如何在最新版本中配置c/c++语言环境中的launch.json和tasks.json?
    【转载】 Ubuntu下使用VSCode的launch.json及tasks.json编写
    Javascript高级程序设计第二版第六章面向对象程序设计(ObjectOriented Programming)简称OOP编程笔记
    Javascript高级程序设计第二版第五章引用类型笔记
    css权重简单之谈
    编辑神器VIM下安装zencoding
    显示层3s后隐藏
  • 原文地址:https://www.cnblogs.com/Peyton-Li/p/7607181.html
Copyright © 2020-2023  润新知