• BZOJ-2243 [SDOI2011]染色


    树链剖分模版题。

    #include <cstdlib>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <iostream>
    #include <cctype>
    #include <cmath>
    #define rep(i, l, r) for(int i=l; i<=r; i++)
    #define clr(x, c) memset(x, c, sizeof(x))
    #define travel(x) for(edge *p=fir[x]; p; p=p->n)
    #define k(x) Key[x]
    #define t(x) Tree[x]
    #define s(x) Size[x]
    #define b(x) Belong[x]
    #define low(x) Lower[x]
    #define dep(x) Deep[x]
    #define h(x) Head[x]
    #define l(x) Left[x]
    #define r(x) Right[x]
    #define w(x) Where[x]
    #define maxn 100009
    #define maxp 500009
    #define inf 0x7fffffff
    using namespace std;
    inline int read()
    {
    	int x=0, f=1; char ch=getchar();
    	while (!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
    	while (isdigit(ch)) x=x*10+ch-'0', ch=getchar();
    	return x*f;
    }
    struct edge{int y; edge *n;} e[maxn*2], *fir[maxn], *pt=e;
    inline void AddE(int x, int y)
    {
    	pt->y=y, pt->n=fir[x], fir[x]=pt++;
    	pt->y=x, pt->n=fir[y], fir[y]=pt++;
    }
    int Tree[maxn], Size[maxn], Belong[maxn], Lower[maxn], Deep[maxn], Head[maxn], Where[maxn], cnt, Key[maxn];
    int Left[maxp], Right[maxp], sum[maxp], lc[maxp], rc[maxp], z, L, R, C;
    int n, m, d[maxn], h[maxn], now, nowrc, nowlc;
    bool tag[maxp];
    
    
    void dfs(int x)
    {
    	int maxs=-inf, maxl=0;
    	travel(x) if (p->y!=h[x])
    	{
    		h[p->y]=x, d[p->y]=d[x]+1; dfs(p->y);
    		if (s(b(p->y))>maxs) maxs=s(b(p->y)), maxl=p->y;
    	}
    	if (maxl)
    		b(x)=b(maxl), w(x)=w(maxl)+1, s(b(x))++, dep(b(x))--;
    	else
    		cnt++, b(x)=cnt, w(x)=1, s(cnt)=1, low(cnt)=x, dep(cnt)=d[x];
    	travel(x) if (p->y!=h[x] && p->y!=maxl) h(b(p->y))=x;
    }
    void BuildT(int&k, int l, int r, int t)
    {
    	if (l==r){sum[t]=1, lc[t]=rc[t]=k(k), k=h[k]; return;}
    	int mid=(l+r)>>1;
    	BuildT(k, l, mid, l(t)=++z), BuildT(k, mid+1, r, r(t)=++z);
    	sum[t]=sum[l(t)]+sum[r(t)], lc[t]=lc[l(t)], rc[t]=rc[r(t)];
    	if (rc[l(t)]==lc[r(t)]) sum[t]--;
    }
    inline void Build()
    {
    	dfs(1); h(b(1))=0;
    	rep(i, 1, cnt) now=low(i), BuildT(now, 1, s(i), t(i)=++z);
    }
    
    
    inline void pushdown(int t)
    {
    	tag[t]=0, tag[l(t)]=tag[r(t)]=1;
    	lc[l(t)]=rc[l(t)]=lc[r(t)]=rc[r(t)]=lc[t];
    	sum[l(t)]=sum[r(t)]=1;
    }
    void Edit(int l, int r, int t)
    {
    	if (L<=l && r<=R){tag[t]=true, sum[t]=1, lc[t]=rc[t]=C; return;}
    	int mid=(l+r)>>1;
    	if (tag[t]) pushdown(t);
    	if (L<=mid) Edit(l, mid, l(t));
    	if (mid<R) Edit(mid+1, r, r(t));
    	sum[t]=sum[l(t)]+sum[r(t)], lc[t]=lc[l(t)], rc[t]=rc[r(t)];
    	if (rc[l(t)]==lc[r(t)]) sum[t]--;
    }
    inline void Change(int x, int y)
    {
    	while (b(x)!=b(y))
    	{
    		if (dep(b(x))<dep(b(y))) swap(x, y);
    		L=w(x), R=s(b(x)), Edit(1, s(b(x)), t(b(x))), x=h(b(x));
    	}
    	if (d[x]<d[y]) swap(x, y);
    	L=w(x), R=w(y), Edit(1, s(b(x)), t(b(x)));
    }
    
    
    void Query(int l, int r, int t)
    {
    	if (L<=l && r<=R) {now+=sum[t]; if (nowrc==lc[t]) now--; nowrc=rc[t]; return;}
    	if (tag[t]) pushdown(t);
    	int mid=(l+r)>>1;
    	if (L<=mid) Query(l, mid, l(t));
    	if (mid<R) Query(mid+1, r, r(t));
    }
    inline void Qsum(int x, int y)
    {
    	now=0; nowrc=nowlc=-1; while (b(x)!=b(y))
    	{
    		if (dep(b(x))<dep(b(y))) swap(x, y), swap(nowrc, nowlc);
    		L=w(x), R=s(b(x)), Query(1, s(b(x)), t(b(x))), x=h(b(x));
    	}
    	if (d[x]<d[y]) swap(x, y), swap(nowrc, nowlc);
    	L=w(x), R=w(y), Query(1, s(b(x)), t(b(x))); 
    	if (nowrc==nowlc) now--;
    	printf("%d
    ", now);
    }
    
    
    int main()
    {
    	n=read(), m=read();
    	rep(i, 1, n) k(i)=read();
    	rep(i, 1, n-1) AddE(read(), read());
    	Build();
    	rep(i, 1, m)
    	{
    		char ch[5]; scanf("%s", ch); int x=read(), y=read();
    		if (ch[0]=='C') C=read(), Change(x, y); else Qsum(x, y);
    	}
    	return 0;
    }
  • 相关阅读:
    在react-native中dva的使用
    js获取任意一天的0点和23:59:59时间
    IntelliJ IDEA 快捷键(转载收藏)
    Android中对已安装应用的管理实现
    Retrofit的初次使用
    GreenDao的初次使用--号称Android最快的关系型数据库
    RxJava操作符的简单使用
    dagger2的初次使用
    Android-沉浸式状态栏的实现
    Mac之如何查看已用端口
  • 原文地址:https://www.cnblogs.com/NanoApe/p/4479742.html
Copyright © 2020-2023  润新知