2020 Multi-University Training Contest 5
1001 Tetrahedron
-
思路:可以根据类比平面几何的直角三角形 得到三个直角面面积和等于底面面积 然后得到式子 由于是离散型随机变量的期望 求和即可
-
AC代码
#include <algorithm>
#include <iomanip>
#include <iostream>
#include <map>
#include <math.h>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <stdio.h>
#include <string.h>
#include <string>
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
ll mult_mod(ll x, ll y, ll mod){
return (x * y - (ll)(x / (long double)mod * y + 1e-3) * mod + mod) % mod;
}
ll pow_mod(ll a, ll b, ll p){
ll res = 1;
while (b){
if (b & 1)
res = mult_mod(res, a, p);
a = mult_mod(a, a, p);
b >>= 1;
}
return res % p;
}
ll gcd(ll a, ll b){
return b ? gcd(b, a % b) : a;
}
const int mod = 998244353;
const int N = 6e6 + 10;
int t, n;
int inv[N];
int main(){
#ifndef ONLINE_JUDGE
freopen("my_in.txt", "r", stdin);
#endif
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
inv[1] = 1;
for (int i = 2; i < N; i ++ )
inv[i] = (1ll * (mod -(mod / i)) * inv[mod % i] % mod + mod) % mod;
for (int i = 2; i < N; i ++ )
inv[i] = 1ll * inv[i] * inv[i] % mod;
for (int i = 2; i < N; i ++ )
inv[i] = (1ll * inv[i] + 1ll * inv[i - 1]) % mod;
cin >> t;
while (t -- ){
cin >> n;
cout << mult_mod(3, mult_mod(pow_mod(n, mod - 2, mod), inv[n], mod), mod) << "
";
}
return 0;
}
1003 Boring Game
-
思路:模拟
-
AC代码
#include <algorithm>
#include <iomanip>
#include <iostream>
#include <map>
#include <math.h>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <stdio.h>
#include <string.h>
#include <string>
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
ll mult_mod(ll x, ll y, ll mod){
return (x * y - (ll)(x / (long double)mod * y + 1e-3) * mod + mod) % mod;
}
ll pow_mod(ll a, ll b, ll p){
ll res = 1;
while (b){
if (b & 1)
res = mult_mod(res, a, p);
a = mult_mod(a, a, p);
b >>= 1;
}
return res % p;
}
ll Pow(ll a, ll b){
ll res = 1;
while (b){
if (b & 1)
res *= a;
a *= a;
b >>= 1;
}
return res;
}
ll gcd(ll a, ll b){
return b ? gcd(b, a % b) : a;
}
const int N = 1e6 + 10;
int t, n, k, m, pos, tmp;
vector<int> vec[N];
int main(){
#ifndef ONLINE_JUDGE
freopen("my_in.txt", "r", stdin);
#endif
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin >> t;
while (t -- ){
pos = 1;
cin >> n >> k;
m = 2 * n * Pow(2, k);
for (int i = 1; i <= m; i ++ ){
int x;
cin >> x;
vec[i].clear();
vec[i].push_back(x);
}
while (k -- ){
tmp = (pos + m) >> 1;
for (int i = pos; i <= tmp; i ++ ){
for (int j = vec[i].size() - 1; j >= 0; j -- )
vec[pos + m - i].push_back(vec[i][j]);
}
pos = tmp + 1;
}
for (int i = m - 2 * n + 1; i <= m; i ++ ){
for (int j = vec[i].size() - 1; j >= 0; j -- ){
if (i == m && j == 0)
cout << vec[i][j] << "
";
else
cout << vec[i][j] << " ";
}
}
}
return 0;
}
1009 Paperfolding
-
思路:(frac{3^n}{2^{n-1}}+2^n+1)
-
AC代码
#include <algorithm>
#include <iomanip>
#include <iostream>
#include <map>
#include <math.h>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <stdio.h>
#include <string.h>
#include <string>
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
ll mult_mod(ll x, ll y, ll mod){
return (x * y - (ll)(x / (long double)mod * y + 1e-3) * mod + mod) % mod;
}
ll pow_mod(ll a, ll b, ll p){
ll res = 1;
while (b){
if (b & 1)
res = mult_mod(res, a, p);
a = mult_mod(a, a, p);
b >>= 1;
}
return res % p;
}
ll gcd(ll a, ll b){
return b ? gcd(b, a % b) : a;
}
const int mod = 998244353;
int t;
ll n;
int main(){
#ifndef ONLINE_JUDGE
freopen("my_in.txt", "r", stdin);
#endif
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin >> t;
while (t -- ){
cin >> n;
cout << ((1ll * pow_mod(2, n, mod) + mult_mod(1ll * 2, mult_mod(pow_mod(3, n, mod), pow_mod(pow_mod(2, n, mod), mod - 2, mod), mod), mod)) % mod + 1) % mod << "
";
}
return 0;
}
1012 Set1
-
思路:前(lfloor frac{n}{2} floor)都为0 (ans_frac{n+1}{2}=inv(2^{frac{n}{2}})) 之后到第(n-1)个数都有(ans_i = ans_{i-1}*(frac{n}{2}+i)*inv(2*i)) (ans_n=ans_{n-1})
-
AC代码
#include <algorithm>
#include <iomanip>
#include <iostream>
#include <map>
#include <math.h>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <stdio.h>
#include <string.h>
#include <string>
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
ll mult_mod(ll x, ll y, ll mod){
return (x * y - (ll)(x / (long double)mod * y + 1e-3) * mod + mod) % mod;
}
ll pow_mod(ll a, ll b, ll p){
ll res = 1;
while (b){
if (b & 1)
res = mult_mod(res, a, p);
a = mult_mod(a, a, p);
b >>= 1;
}
return res % p;
}
ll gcd(ll a, ll b){
return b ? gcd(b, a % b) : a;
}
const int mod = 998244353;
int t, n;
ll ans;
int main(){
#ifndef ONLINE_JUDGE
freopen("my_in.txt", "r", stdin);
#endif
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin >> t;
while (t -- ){
cin >> n;
if (n == 1){
cout << "1
";
continue;
}
for (int i = 1; i <= n / 2; i ++ )
cout << "0 ";
ans = pow_mod(pow_mod(2, n / 2, mod), mod - 2, mod);
cout << ans << " ";
for (int i = 1; i < n / 2; i ++ ){
ans = mult_mod(ans, mult_mod(n / 2 + i, pow_mod(2 * i, mod - 2, mod), mod), mod);
cout << ans << " ";
}
cout << ans << "
";
}
return 0;
}