1.冒泡排序
冒泡排序是一种极其简单的排序算法,也是我所学的第一个排序算法。它重复地走访过要排序的元素,依次比较相邻两个元素,如果他们的顺序错误就把他们调换过来,直到没有元素再需要交换,排序完成。这个算法的名字由来是因为越小(或越大)的元素会经由交换慢慢“浮”到数列的顶端。
冒泡排序算法的运作如下:
- 比较相邻的元素,如果前一个比后一个大,就把它们两个调换位置。
- 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
- 针对所有的元素重复以上的步骤,除了最后一个。
- 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
由于它的简洁,冒泡排序通常被用来对于程序设计入门的学生介绍算法的概念。冒泡排序的代码如下
#include <stdio.h> // 分类 -------------- 内部比较排序 // 数据结构 ---------- 数组 // 最差时间复杂度 ---- O(n^2) // 最优时间复杂度 ---- 如果能在内部循环第一次运行时,使用一个旗标来表示有无需要交换的可能,可以把最优时间复杂度降低到O(n) // 平均时间复杂度 ---- O(n^2) // 所需辅助空间 ------ O(1) // 稳定性 ------------ 稳定 void Swap(int A[], int i, int j) { int temp = A[i]; A[i] = A[j]; A[j] = temp; } void BubbleSort(int A[], int n) { for (int j = 0; j < n - 1; j++) // 每次最大元素就像气泡一样"浮"到数组的最后 { for (int i = 0; i < n - 1 - j; i++) // 依次比较相邻的两个元素,使较大的那个向后移 { if (A[i] > A[i + 1]) // 如果条件改成A[i] >= A[i + 1],则变为不稳定的排序算法 { Swap(A, i, i + 1); } } } } int main() { int A[] = { 6, 5, 3, 1, 8, 7, 2, 4 }; // 从小到大冒泡排序 int n = sizeof(A) / sizeof(int); BubbleSort(A, n); printf("冒泡排序结果:"); for (int i = 0; i < n; i++) { printf("%d ", A[i]); } printf(" "); return 0; }
上述代码对序列{ 6, 5, 3, 1, 8, 7, 2, 4 }进行冒泡排序的实现过程如下
2.快速排序
选择排序也是一种简单直观的排序算法。它的工作原理很容易理解:初始时在序列中找到最小(大)元素,放到序列的起始位置作为已排序序列;然后,再从剩余未排序元素中继续寻找最小(大)元素,放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
注意选择排序与冒泡排序的区别:冒泡排序通过依次交换相邻两个顺序不合法的元素位置,从而将当前最小(大)元素放到合适的位置;而选择排序每遍历一次都记住了当前最小(大)元素的位置,最后仅需一次交换操作即可将其放到合适的位置。
选择排序的代码如下:
#include <stdio.h> // 分类 -------------- 内部比较排序 // 数据结构 ---------- 数组 // 最差时间复杂度 ---- O(n^2) // 最优时间复杂度 ---- O(n^2) // 平均时间复杂度 ---- O(n^2) // 所需辅助空间 ------ O(1) // 稳定性 ------------ 不稳定 void Swap(int A[], int i, int j) { int temp = A[i]; A[i] = A[j]; A[j] = temp; } void SelectionSort(int A[], int n) { for (int i = 0; i < n - 1; i++) // i为已排序序列的末尾 { int min = i; for (int j = i + 1; j < n; j++) // 未排序序列 { if (A[j] < A[min]) // 找出未排序序列中的最小值 { min = j; } } if (min != i) { Swap(A, min, i); // 放到已排序序列的末尾,该操作很有可能把稳定性打乱,所以选择排序是不稳定的排序算法 } } } int main() { int A[] = { 8, 5, 2, 6, 9, 3, 1, 4, 0, 7 }; // 从小到大选择排序 int n = sizeof(A) / sizeof(int); SelectionSort(A, n); printf("选择排序结果:"); for (int i = 0; i < n; i++) { printf("%d ", A[i]); } printf(" "); return 0; }
上述代码对序列{ 8, 5, 2, 6, 9, 3, 1, 4, 0, 7 }进行选择排序的实现过程如右图
3.插入排序
插入排序是一种简单直观的排序算法。它的工作原理非常类似于我们抓扑克牌
对于未排序数据(右手抓到的牌),在已排序序列(左手已经排好序的手牌)中从后向前扫描,找到相应位置并插入。
插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
具体算法描述如下:
- 从第一个元素开始,该元素可以认为已经被排序
- 取出下一个元素,在已经排序的元素序列中从后向前扫描
- 如果该元素(已排序)大于新元素,将该元素移到下一位置
- 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
- 将新元素插入到该位置后
- 重复步骤2~5
插入排序的代码如下:
#include <stdio.h> // 分类 ------------- 内部比较排序 // 数据结构 ---------- 数组 // 最差时间复杂度 ---- 最坏情况为输入序列是降序排列的,此时时间复杂度O(n^2) // 最优时间复杂度 ---- 最好情况为输入序列是升序排列的,此时时间复杂度O(n) // 平均时间复杂度 ---- O(n^2) // 所需辅助空间 ------ O(1) // 稳定性 ------------ 稳定 void InsertionSort(int A[], int n) { for (int i = 1; i < n; i++) // 类似抓扑克牌排序 { int get = A[i]; // 右手抓到一张扑克牌 int j = i - 1; // 拿在左手上的牌总是排序好的 while (j >= 0 && A[j] > get) // 将抓到的牌与手牌从右向左进行比较 { A[j + 1] = A[j]; // 如果该手牌比抓到的牌大,就将其右移 j--; } A[j + 1] = get; // 直到该手牌比抓到的牌小(或二者相等),将抓到的牌插入到该手牌右边(相等元素的相对次序未变,所以插入排序是稳定的) } } int main() { int A[] = { 6, 5, 3, 1, 8, 7, 2, 4 };// 从小到大插入排序 int n = sizeof(A) / sizeof(int); InsertionSort(A, n); printf("插入排序结果:"); for (int i = 0; i < n; i++) { printf("%d ", A[i]); } printf(" "); return 0; }
上述代码对序列{ 6, 5, 3, 1, 8, 7, 2, 4 }进行插入排序的实现过程如下
使用插入排序为一列数字进行排序的宏观过程:
插入排序不适合对于数据量比较大的排序应用。但是,如果需要排序的数据量很小,比如量级小于千,那么插入排序还是一个不错的选择。 插入排序在工业级库中也有着广泛的应用,在STL的sort算法和stdlib的qsort算法中,都将插入排序作为快速排序的补充,用于少量元素的排序(通常为8个或以下)。