• 常见排序


    1.冒泡排序

    冒泡排序是一种极其简单的排序算法,也是我所学的第一个排序算法。它重复地走访过要排序的元素,依次比较相邻两个元素,如果他们的顺序错误就把他们调换过来,直到没有元素再需要交换,排序完成。这个算法的名字由来是因为越小(或越大)的元素会经由交换慢慢“浮”到数列的顶端。

      冒泡排序算法的运作如下:

    1. 比较相邻的元素,如果前一个比后一个大,就把它们两个调换位置。
    2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
    3. 针对所有的元素重复以上的步骤,除了最后一个。
    4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

      由于它的简洁,冒泡排序通常被用来对于程序设计入门的学生介绍算法的概念。冒泡排序的代码如下

    #include <stdio.h>
    
    // 分类 -------------- 内部比较排序
    // 数据结构 ---------- 数组
    // 最差时间复杂度 ---- O(n^2)
    // 最优时间复杂度 ---- 如果能在内部循环第一次运行时,使用一个旗标来表示有无需要交换的可能,可以把最优时间复杂度降低到O(n)
    // 平均时间复杂度 ---- O(n^2)
    // 所需辅助空间 ------ O(1)
    // 稳定性 ------------ 稳定
    
    void Swap(int A[], int i, int j)
    {
        int temp = A[i];
        A[i] = A[j];
        A[j] = temp;
    }
    
    void BubbleSort(int A[], int n)
    {
        for (int j = 0; j < n - 1; j++)         // 每次最大元素就像气泡一样"浮"到数组的最后
        {
            for (int i = 0; i < n - 1 - j; i++) // 依次比较相邻的两个元素,使较大的那个向后移
            {
                if (A[i] > A[i + 1])            // 如果条件改成A[i] >= A[i + 1],则变为不稳定的排序算法
                {
                    Swap(A, i, i + 1);
                }
            }
        }
    }
    
    int main()
    {
        int A[] = { 6, 5, 3, 1, 8, 7, 2, 4 };    // 从小到大冒泡排序
        int n = sizeof(A) / sizeof(int);
        BubbleSort(A, n);
        printf("冒泡排序结果:");
        for (int i = 0; i < n; i++)
        {
            printf("%d ", A[i]);
        }
        printf("
    ");
        return 0;
    }

    上述代码对序列{ 6, 5, 3, 1, 8, 7, 2, 4 }进行冒泡排序的实现过程如下

    2.快速排序

    选择排序也是一种简单直观的排序算法。它的工作原理很容易理解:初始时在序列中找到最小(大)元素,放到序列的起始位置作为已排序序列;然后,再从剩余未排序元素中继续寻找最小(大)元素,放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

      注意选择排序与冒泡排序的区别:冒泡排序通过依次交换相邻两个顺序不合法的元素位置,从而将当前最小(大)元素放到合适的位置;而选择排序每遍历一次都记住了当前最小(大)元素的位置,最后仅需一次交换操作即可将其放到合适的位置。

      选择排序的代码如下:

    #include <stdio.h>
    
    // 分类 -------------- 内部比较排序
    // 数据结构 ---------- 数组
    // 最差时间复杂度 ---- O(n^2)
    // 最优时间复杂度 ---- O(n^2)
    // 平均时间复杂度 ---- O(n^2)
    // 所需辅助空间 ------ O(1)
    // 稳定性 ------------ 不稳定
    
    void Swap(int A[], int i, int j)
    {
        int temp = A[i];
        A[i] = A[j];
        A[j] = temp;
    }
    
    void SelectionSort(int A[], int n)
    {
        for (int i = 0; i < n - 1; i++)         // i为已排序序列的末尾
        {
            int min = i;
            for (int j = i + 1; j < n; j++)     // 未排序序列
            {
                if (A[j] < A[min])              // 找出未排序序列中的最小值
                {
                    min = j;
                }
            }
            if (min != i)
            {
                Swap(A, min, i);    // 放到已排序序列的末尾,该操作很有可能把稳定性打乱,所以选择排序是不稳定的排序算法
            }
        }
    }
    
    int main()
    {
        int A[] = { 8, 5, 2, 6, 9, 3, 1, 4, 0, 7 }; // 从小到大选择排序
        int n = sizeof(A) / sizeof(int);
        SelectionSort(A, n);
        printf("选择排序结果:");
        for (int i = 0; i < n; i++)
        {
            printf("%d ", A[i]);
        }
        printf("
    ");
        return 0;
    }

    上述代码对序列{ 8, 5, 2, 6, 9, 3, 1, 4, 0, 7 }进行选择排序的实现过程如右图  

    3.插入排序

    插入排序是一种简单直观的排序算法。它的工作原理非常类似于我们抓扑克牌

          

      对于未排序数据(右手抓到的牌),在已排序序列(左手已经排好序的手牌)中从后向前扫描,找到相应位置并插入。

      插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

      具体算法描述如下:

    1. 从第一个元素开始,该元素可以认为已经被排序
    2. 取出下一个元素,在已经排序的元素序列中从后向前扫描
    3. 如果该元素(已排序)大于新元素,将该元素移到下一位置
    4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
    5. 将新元素插入到该位置后
    6. 重复步骤2~5

      插入排序的代码如下:

    #include <stdio.h>
    
    // 分类 ------------- 内部比较排序
    // 数据结构 ---------- 数组
    // 最差时间复杂度 ---- 最坏情况为输入序列是降序排列的,此时时间复杂度O(n^2)
    // 最优时间复杂度 ---- 最好情况为输入序列是升序排列的,此时时间复杂度O(n)
    // 平均时间复杂度 ---- O(n^2)
    // 所需辅助空间 ------ O(1)
    // 稳定性 ------------ 稳定
    
    void InsertionSort(int A[], int n)
    {
        for (int i = 1; i < n; i++)         // 类似抓扑克牌排序
        {
            int get = A[i];                 // 右手抓到一张扑克牌
            int j = i - 1;                  // 拿在左手上的牌总是排序好的
            while (j >= 0 && A[j] > get)    // 将抓到的牌与手牌从右向左进行比较
            {
                A[j + 1] = A[j];            // 如果该手牌比抓到的牌大,就将其右移
                j--;
            }
            A[j + 1] = get; // 直到该手牌比抓到的牌小(或二者相等),将抓到的牌插入到该手牌右边(相等元素的相对次序未变,所以插入排序是稳定的)
        }
    }
    
    int main()
    {
        int A[] = { 6, 5, 3, 1, 8, 7, 2, 4 };// 从小到大插入排序
        int n = sizeof(A) / sizeof(int);
        InsertionSort(A, n);
        printf("插入排序结果:");
        for (int i = 0; i < n; i++)
        {
            printf("%d ", A[i]);
        }
        printf("
    ");
        return 0;
    }

       上述代码对序列{ 6, 5, 3, 1, 8, 7, 2, 4 }进行插入排序的实现过程如下

          

          

      使用插入排序为一列数字进行排序的宏观过程:  

      插入排序不适合对于数据量比较大的排序应用。但是,如果需要排序的数据量很小,比如量级小于千,那么插入排序还是一个不错的选择。 插入排序在工业级库中也有着广泛的应用,在STL的sort算法和stdlib的qsort算法中,都将插入排序作为快速排序的补充,用于少量元素的排序(通常为8个或以下)。

  • 相关阅读:
    SpringBoot标准化搭建
    springboot打开swagger文档遇到For input string: ""的报错 swagger版本2.9.2
    MySQL和Redis如何保证数据一致性? 三种方案对比,初版
    [转]QUdpSocket收发信息
    [原][C++][插件]window下C++简单插件机制实现
    php saas 架构设计,SaaS的几种架构解析
    如何处理将HTML打印出来中的断行,分页,修改打印内容等问题?急,谢谢!!
    批量打印 | 多页打印 | PHP多页打印
    web页面的单页打印以及批量打印实现方法
    php批量打印发票三(php用FPDF合并所有图片为PDF文档)
  • 原文地址:https://www.cnblogs.com/MJyc/p/7590446.html
Copyright © 2020-2023  润新知