题目描述:
给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对。
题解:
代码:
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; #define N 10000500 #define ll long long int pri[N/10],cnt,mu[N]; ll f[N],F[N]; bool vis[N]; void get_mu() { mu[1]=1; for(int i=2;i<=10000000;i++) { if(!vis[i]) { pri[++cnt] = i; mu[i]=-1; } for(int j=1;j<=cnt&&1ll*pri[j]*i<=10000000ll;j++) { vis[pri[j]*i]=1; if(i%pri[j])mu[i*pri[j]]=-mu[i]; else { mu[i*pri[j]]=0; break; } } } for(int i=1;i<=cnt;i++) { for(int j=1;j*pri[i]<=10000000;j++) { f[j*pri[i]]+=mu[j]; } } for(int i=1;i<=10000000;i++) F[i]=F[i-1]+f[i]; } int T,n,m; int main() { get_mu(); scanf("%d",&T); while(T--) { scanf("%d%d",&n,&m); ll ans = 0; int nxt = 1; for(int i=1;i<=n&&i<=m;i=nxt+1) { nxt = min(n/(n/i),m/(m/i)); ans+=(F[nxt]-F[i-1])*(n/i)*(m/i); } printf("%lld ",ans); } return 0; }