• 浅谈随机化算法


    浅谈随机化算法

    一.线性同余法

            随机数在计算机中扮演重要角色,不过现实中往往难以产生真正的随机数,很多教材上都采用了线性同余法,产生的随机数也只是在一定范围内,该范围的一定要比研究所使用的范围大,不能没有完全验证就又循环。

            好事者称上面的性质为随机数要具有周期性,又要不具有周期性(晕),所谓周期性指的是到达一个足够大的数后又要重新开始,非周期性实际就是指范围要足够大,就像C/C++中要求RAND_MAX至少要是32767。

    2010111115110229

            其中b >= 0,c >= 0,d <= m。d称为该随机序列的种子。如何选取该方法中的常数b、c和m直接关系到所产生的随机序列的随机性能,不过这是随机性理论研究的内容,不在本文讨论的范围。从直观上看,m应取得充分大,因此可取m为机器大数,另外应取gcd(m, b) = 1,因此可取b为一素数。

            具体原理请读者参考《抽象代数》。

    二.随机投点法计算PI值

            其实我最先想到是蒲丰投针实验……请各位读者尽情发挥想象。

            随手谷歌之,发现只要是介绍随机算法的都有这个例子,不过几乎都是C++版本,下面笔者就用Java实现以慰劳广大Java爱好者。

            实验设计如下:

            设有一半径为r的圆及其外切四边形,向该正方形随机地投掷n个点,设落入圆内的点数为m。由于所投入的点在正方形上均匀分布,因而所投入的点落入圆内的概率为圆面积/正方型面积= PI / 4 (与r无关),所以当n足够大时,k与n之比就逼近这一概率,从而,PI 约等于 (4*m)/n。

           Java实现:

    复制代码
    /*
     * 遇到了很奇怪的问题,名字叫CalPI就一直找不到主类
     * bin目录下确实没有class文件
     * 咋回事
     */
    public class MyPI {
    
        public static void main(String[] args) {
            int n = 20000000;//进行200w次实验
            int count = calCounts(n);
            double ans = 4.0*count/n;
            System.out.println(ans);
        }
    
        private static int calCounts(int n) {
            /*
             * java中没有类似C/C++中的fabs,不过abs重载了
             * 如何让Math.random()生成的随机数包括1?
             */
            int count = 0;
            for(int i=0; i<n; i++) {
                double x = Math.random();
                double y = Math.random();
                //实际有些问题,因为无法生成1.0,目前我也不知道咋办
                if((x*x + y*y)<=1.0) {
                    count++;
                }
            }
            return count;
        }
    
    }
    复制代码

            结果如下:

    200 3.1418832 
    2000 3.088 
    20000 3.1512 
    200000 3.14414 
    2000000 3.140148 
    20000000 3.1415662

            观察结果可得并不是试验次数越多结果越精确,而且相同的次数结果也会不同。

    三.简单定积分计算

            采用概率方法,不以积分公式。

            假定f(x)为[0,1]上的连续可积函数(其实什么叫可积我也忘了),现需要计算1,实际就等于G2

            分析如下:在图所示单位正方形内均匀地作投点试验n次,则随机点落在曲线下面的概率为3,如果有m个点落在G内,则概率P=m/n,由古典概型可知I=P。

            如果f(x) = ex(x用上标,后面的也在上标里,选中后面的再次单击上标按钮,或者直接在源代码里改<sup>的范围),则只需要把上面的calCounts里的if改成y<x^3并且输出不乘以4就好了。

    四. 舍伍德(Sherwood)算法 

    五.拉斯维加斯(Las Vegas)算法

    六.蒙特卡罗(Monte Carlo)算法      

    注意:上面的属于数值概率算法,四五六准备出独立文章,敬请期待。    

    作者:张朋飞
    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.
     
    分类: JavaAlgorithm
  • 相关阅读:
    jquery ajax get 数组参数
    xcopy中文文件名,中文件目录乱码问题
    小程序使用wxParse插件解析html标签图片间距问题
    30分钟彻底弄懂flex布局
    abp ueditor 多图以及文件无法上传
    Lubuntu 18.04 自动登录
    树莓派虚拟环境手动安装HA
    ESP-01S刷ESPEasy固件,接入HA
    百度TTS的来由
    Pi 3B+编译安装python3.6.8
  • 原文地址:https://www.cnblogs.com/Leo_wl/p/3219025.html
Copyright © 2020-2023  润新知