• VALSE2019总结(4)-主题报告


    4. 主题报告

    4.1 无人驾驶的环境感知与理解 (jian yang, NJUST)

    1. outline

      • 无人驾驶发展简介
        • 遥控驾驶,自主驾驶,南理工无人车,
      • 行车环境视觉感知与理解 (具体介绍贴图片)
        • 阴影检测与去除
        • 车道线检测
        • 行人检测与姿态估计
        • 场景分割与深度估计
    2. 具体,如图

    3. https://blog.csdn.net/qq_15698613/article/details/89303060

    4.2:Learning to track and segment objects in videos

    • 很迷的一个报告,没啥干货

    4.3 AI破晓——机遇与挑战 (陶大程)

    • 没听

    4.4 深度学习处理器 (陈云ji)

    • 没意思,贴图待定

    4.5 基于知识驱动的行为理解

    1. outline

      • knowledge engine - a possible direction: HAKE
      • pose - open the door of activity understanding: Alphapose, Crowdpose
      • sequence modeling: Deep RNN: semi-couple prociple
      • summary
    2. why activity understanding is difficult ?

      • huge semantic Noise (compare to object recognition)
      • Long-tail distribution, few-shot problem (DL fails)
      • 结论:pose is not enough, we need konwledge pose
    3. Human activity konwledge engine (HAKE)

      • to see/parse/understand the activity
      • knowledge engine construction: 见图片
      • reasoning via part states(HAKE): 见图片
      • human-object interaction
        • 见图片,几个 HOI Dataset 有:AVA, ActivityNet, Kinetics
      • conclusion:
        • activity data is semantically noisy
        • knowledge at body part can help to denote
        • HAKE:
        • HAKE based Two-stage paradigm,见图片
    4. pose - open the door of activity understanding: Alphapose, Crowdpose

      • 没记录
    5. sequence modeling: Deep RNN: semi-couple prociple

      • 没记录
    6. summary

      • 没记录,等他主页公布PPT吧
    7. 部分图片,

    4.6 人工智能与未来出行

    • 没学术性,贴图待定

    4.7 计算机视觉的下一步:迈向大AI (罗杰波)

    • 没注意,贴图待定

    4.8 梯度之谜 (孟德宇)

    1. issue
      • limitations of model-driven methodology
        • generally with nonconvex model
        • only fit one unsupervised image
        • slow prediction speed
      • limitations of data-driven methodology
        • require supervised-data
        • black box issue: interpretability
        • network parameters/structure are hard/easy to be designed
    2. 从梯度角度思考,解决上述问题
    3. 贴图片,有一些论文
  • 相关阅读:
    class 类添加属性
    Ajax请求数据data被JSON.stringify()的数据django解码过程
    Python之浏览器的前进或后退
    滚动条-智能等待-富文本
    Python之阶乘代码
    Python之用型号构成一个三角形代码
    C# Dictionary
    使用C#创建Windows服务
    sql取出每月最早的上报的数据
    mvc NPOI导入读取Excel文件
  • 原文地址:https://www.cnblogs.com/LS1314/p/10885105.html
Copyright © 2020-2023  润新知