• C#复数类的总结


    复数是C#中没有的,不能直接调用的。但是我们可以通过封装,构造自己的复数形式。这里我自己封装了一个Complex类,也不知道写得如何。可能还有一些东西没有考虑。

    不过这里包含了复数的基本晕算了了,包括加减乘除、取模运算、计算相位角等!详细信息其直接阅读代码。都包含注释了。

        /// <summary>
        /// 复数类
        /// </summary>
        public class Complex
        {
            private double real;//实部
            private double image;//虚部
            /// <summary>
            /// 获取或设置实部
            /// </summary>
            public double Real
            {
                get { return real; }
                set { real = value; }
            }
            /// <summary>
            /// 获取或者设置虚部
            /// </summary>
            public double Image
            {
                get { return image; }
                set { image = value; }
            }
            public Complex(double real, double image)
            {
                this.real = real;
                this.image = image;
            }
            public Complex() { }
            /// <summary>
            /// 取共轭
            /// </summary>
            public Complex Conjugate()
            {
                //Complex complex = new Complex();
                //complex.real = this.real;
                //complex.image = -complex.image;
                //return complex;
                return new Complex(this.real, -this.image);
            }
            /// <summary>
            /// 加法重载函数
            /// </summary>
            /// <param name="C">加数</param>
            /// <param name="c">加数</param>
            /// <returns>复数相加的结果</returns>
            public static Complex operator +(Complex C, Complex c)
            {
                //Complex com = new Complex();
                //com.real = C.real + c.real;
                //com.image = C.image + c.image;
                //return com;
                return new Complex(c.real + C.real, C.image + c.image);
            }
            /// <summary>
            /// 复数的加法,可以同时实现多个复数相加
            /// 其实跟直接用+号来相加的结果是一样的,
            /// 个人只是想多学习可变参数的用法
            /// </summary>
            /// <param name="complexs"></param>
            /// <returns></returns>
            public Complex Add(params Complex[] complexs)
            {
                if (complexs.Length == 0)
                {
                    throw new Exception("输入的参数不能为空!");
                }
                Complex com = new Complex();
                foreach (Complex c in complexs)
                {
                    com = com + c;
                }
                return com;
            }
            /// <summary>
            /// 复数的减法重载函数
            /// </summary>
            /// <param name="C">被减数</param>
            /// <param name="c">减数</param>
            /// <returns>复数相减后的结果</returns>
            public static Complex operator -(Complex C, Complex c)
            {
                //Complex com = new Complex();
                //com.real = C.real -c.real;
                //com.image = C.image - c.image;
                //return com;
                return new Complex(C.real - c.real, C.image - c.Image);
            }
            /// <summary>
            /// 双等号函数的重载
            /// </summary>
            /// <param name="C"></param>
            /// <param name="c"></param>
            /// <returns>如果相等返回true,否则返回fasle</returns>
            public static bool operator ==(Complex C, Complex c)
            {
                return (C.real == c.real && C.image == c.image);
            }
            /// <summary>
            /// 不等号函数的重载
            /// </summary>
            /// <param name="C"></param>
            /// <param name="c"></param>
            /// <returns></returns>
            public static bool operator !=(Complex C, Complex c)
            {
                return (C.real != c.real || C.image != c.image);
            }
            /// <summary>
            /// 复数的相减,可以同时实现多个复数相减
            /// 其实跟直接用-号来相加的结果是一样的,
            /// 个人只是想多学习可变参数的用法
            /// </summary>
            /// <param name="complexs">数的集合</param>
            /// <returns>相减操作后的复数</returns>
            public Complex Minus(params Complex[] complexs)
            {
                if (complexs.Length == 0)
                {
                    throw new Exception("输入的参数不能为空!");
                }
                Complex com =complexs[0];
                for (int i = 1; i < complexs.Length; i++)
                {
                    com = com - complexs[i];
                }
                return com;
            }
            /// <summary>
            /// 复数的乘法运算
            /// </summary>
            /// <param name="c"></param>
            /// <param name="C"></param>
            /// <returns></returns>
            public static Complex operator *(Complex c, Complex C)
            {
                //(a+b*i)*(c+d*i)=(ac-bd)+(ad+bc)*i
                return new Complex(c.real * C.real-c.image*C.image, c.real*C.image+c.image * C.real);
            }
            public Complex Multiplicative(params Complex[] complexs)
            {
                if (complexs.Length == 0)
                {
                    throw new Exception("输入的参数不能为空!");
                }
                Complex com = complexs[0];
                for (int i = 1; i < complexs.Length; i++)
                {
                    com += complexs[i];
                }
                return null;
            }
            /// <summary>
            /// 复数除法
            /// </summary>
            /// <param name="C"></param>
            /// <param name="c"></param>
            /// <returns></returns>
            public static Complex operator /(Complex C, Complex c)
            {
                if (c.real == 0 && c.image == 0)
                {
                    throw new Exception("除数的虚部和实部不能同时为零(除数不能为零)");
                }
                double real = (C.real * c.real + c.image * C.image)/(c.real*c.real+c.image+c.image);
                double image=(C.image*c.real-c.image*C.real)/(c.real*c.real+c.image+c.image);
                return new Complex(real,image);
            }
            /// <summary>
            /// 复数除法运算
            /// </summary>
            /// <param name="complexs">一系列复数</param>
            /// <returns>除法运算后的结果</returns>
            public Complex Divison(params Complex[] complexs)
            {
                if (complexs.Length == 0)
                {
                    throw new Exception("输入的参数不能为空!");
                }
                foreach (Complex com in complexs)
                {
                    if (com.image==0&&com.real==0)
                    {
                        throw new Exception("除数的实部和虚部不能同时为零!");
                    }
                }
                Complex COM = new Complex();
                COM = complexs[0];
                for (int i = 1; i < complexs.Length; i++)
                {
                    COM = COM / complexs[i];
                }
                return COM;
            }
            /// <summary>
            /// 取模运算
            /// </summary>
            /// <param name="c"></param>
            /// <returns></returns>
            public double Mod(Complex c)
            {
                return Math.Sqrt(c.real * c.real + c.image * c.image);
            }
            /// <summary>
            /// 判断复数是否相等
            /// </summary>
            /// <param name="obj"></param>
            /// <returns></returns>
            public override bool Equals(object obj)
            {
                if (obj is Complex)
                {
                    Complex com = (Complex)obj;
                    return (com.real == this.real && com.image == this.image);
                }
                return false;
            }
            /// <summary>
            /// 计算复数相位角
            /// </summary>
            /// <param name="c"></param>
            /// <returns></returns>
            public static double GetAngle(Complex c)
            {
                return Math.Atan2(c.real, c.image);
            }
            public override string ToString()
            {
                //string str = null;
                //if (this.image == 0)
                //{
                //    str = "=";
                //}
                //else if (this.image > 0)
                //{
                //    str = ">";
                //}
                //switch (str)
                //{
                //    case ">":
                //        if (this.real == 0)
                //        {
                //            return string.Format("{0}i", this.image);
                //        }
                //        return string.Format("{0}+{1}i", this.real, this.image);
                //    case "=":
                //        return string.Format("{0}",this.real);
                //    default:
                //         if (this.real == 0)
                //        {
                //            return string.Format("{0}i", this.image);
                //        }
                //        return string.Format("{0}+{1}i", this.real, this.image);
                //}
                return string.Format("<{0} , {1}>", this.real, this.image);
            }
        }

    第一次发博文,也知道自己的水平菜菜的,慢慢进步。。

  • 相关阅读:
    谷粒学院项目P108集添加课程信息接口时的一个坑
    vue下拉框属性说明
    mybatisplus查询时间段内的报表(月报等)
    UI自动化,换种思路,把执行步骤换成动图gif
    以OD机考为名,python学习之路
    牛客网刷题按题目难度排:简单
    正则表达式随用随记
    第十四章 论一只爬虫的自我修养
    在低版本Android中使用Java Stream功能
    Yolov5训练自有模型
  • 原文地址:https://www.cnblogs.com/Koalin/p/6610678.html
Copyright © 2020-2023  润新知