• FJUT seventh的tired树上路径(01字典树)题解


    思路(来自题解):

    众所周知树上两个点xy的距离是deep[x]+deep[y]-deep[lca(x,y)]*2

    然后我们把这个加减法换成异或,我们就会发现,deep[lca(x,y)]被消掉了

    所以题目就简化成w是每个点的前缀异或和,只要找到一对最大的(x,y)让w[x]^w[y]最大就行了,这个经典问题用字典树就能解决了。

    代码:

    #include<set>
    #include<map>
    #include<stack>
    #include<cmath>
    #include<queue>
    #include<vector>
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    typedef long long ll;
    const int maxn = 1e5 + 10;
    const int seed = 131;
    const ll MOD = 1e9 + 7;
    const ll INF = 1e17;
    using namespace std;
    
    int tol, node[32 * maxn][2];
    ll val[32 * maxn], w[maxn];
    void Insert(ll x){
        int root = 0;
        for(int i = 31; i >= 0; i--){
            int u = (x >> i) & 1;
            if(node[root][u] == 0){
                memset(node[tol], 0, sizeof(node[tol]));
                node[root][u] = tol++;
            }
            root = node[root][u];
        }
        val[root] = x;
    }
    ll query(ll x){
        int root = 0;
        for(int i = 31; i >= 0; i--){
            int u = (x >> i) & 1;
            if(node[root][!u])
                root = node[root][!u];
            else root = node[root][u];
        }
        return x ^ val[root];
    }
    int main(){
        int T, n, a;
        ll x;
        scanf("%d", &T);
        while(T--){
            memset(node[0], 0, sizeof(node[0]));
            tol = 1;
            w[1] = 0;
            scanf("%d", &n);
            for(int i = 2; i <= n; i++){
                scanf("%d%lld", &a, &x);
                w[i] = x ^ w[a];
                Insert(w[i]);
            }
            ll ans = 0;
            for(int i = 1; i <= n; i++){
                ans = max(ans, query(w[i]));
            }
            printf("%lld
    ", ans);
        }
        return 0;
    }
  • 相关阅读:
    G
    C
    B
    B
    线段树模板
    网络流模板
    POJ_1631_Bridging_Signals_(动态规划,LIS)
    POJ_1065_Wooden_Sticks_(动态规划,LIS+鸽笼原理)
    BZOJ_1015_星球大战_[JSOI2008]_(并查集)
    POJ_3280_Cheapest_Palindrome_(动态规划)
  • 原文地址:https://www.cnblogs.com/KirinSB/p/9829321.html
Copyright © 2020-2023  润新知