• 实验6:开源控制器实践——RYU


    实验6:开源控制器实践——RYU

    安装截图

    image-20211008133048758

    拓扑可视化

    image-20211008161002844

    tcpdump查看

    h1 ping h2

    image-20211008180417489

    h1 ping h3

    image-20211008180507115

    可以看到均为洪泛转发

    查看控制器流表,如下图:

    image-20211009083438007

    看到没有流表,而使用pox的hub模块则会看到流表,如下图:

    image-20211009083744791

    所以可以看到二者都是洪泛转发,但是不同之处在于POX是直接向交换机下发流表,而Ryu是在每个 Packet In 事件之后,向交换机下发动作。

    进阶要求

    simple_switch_13.py代码注释

    # Copyright (C) 2011 Nippon Telegraph and Telephone Corporation.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #    http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
    # implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    
    # 引入包
    from ryu.base import app_manager
    from ryu.controller import ofp_event
    from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
    from ryu.controller.handler import set_ev_cls
    from ryu.ofproto import ofproto_v1_3
    from ryu.lib.packet import packet
    from ryu.lib.packet import ethernet
    from ryu.lib.packet import ether_types
    
    
    class SimpleSwitch13(app_manager.RyuApp):
        # 定义openflow版本
        OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]
    
        def __init__(self, *args, **kwargs):
            super(SimpleSwitch13, self).__init__(*args, **kwargs)
            # 定义保存mac地址到端口的一个映射
            self.mac_to_port = {}
    
        # 处理EventOFPSwitchFeatures事件
        @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
        def switch_features_handler(self, ev):
            datapath = ev.msg.datapath
            ofproto = datapath.ofproto
            parser = datapath.ofproto_parser
    
            # install table-miss flow entry
            #
            # We specify NO BUFFER to max_len of the output action due to
            # OVS bug. At this moment, if we specify a lesser number, e.g.,
            # 128, OVS will send Packet-In with invalid buffer_id and
            # truncated packet data. In that case, we cannot output packets
            # correctly.  The bug has been fixed in OVS v2.1.0.
            match = parser.OFPMatch()
            actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
                                              ofproto.OFPCML_NO_BUFFER)]
            self.add_flow(datapath, 0, match, actions)
    
        # 添加流表函数
        def add_flow(self, datapath, priority, match, actions, buffer_id=None):
            # 获取交换机信息
            ofproto = datapath.ofproto
            parser = datapath.ofproto_parser
    
            # 对action进行包装
            inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                                 actions)]
            # 判断是否有buffer_id,生成mod对象
            if buffer_id:
                mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
                                        priority=priority, match=match,
                                        instructions=inst)
            else:
                mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
                                        match=match, instructions=inst)
            # 发送mod
            datapath.send_msg(mod)
    
        # 处理 packet in 事件
        @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
        def _packet_in_handler(self, ev):
            # If you hit this you might want to increase
            # the "miss_send_length" of your switch
            if ev.msg.msg_len < ev.msg.total_len:
                self.logger.debug("packet truncated: only %s of %s bytes",
                                  ev.msg.msg_len, ev.msg.total_len)
            # 获取包信息,交换机信息,协议等等
            msg = ev.msg
            datapath = msg.datapath
            ofproto = datapath.ofproto
            parser = datapath.ofproto_parser
            in_port = msg.match['in_port']
    
            pkt = packet.Packet(msg.data)
            eth = pkt.get_protocols(ethernet.ethernet)[0]
    
            # 忽略LLDP类型
            if eth.ethertype == ether_types.ETH_TYPE_LLDP:
                # ignore lldp packet
                return
    
            # 获取源端口,目的端口
            dst = eth.dst
            src = eth.src
    
            dpid = format(datapath.id, "d").zfill(16)
            self.mac_to_port.setdefault(dpid, {})
    
            self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)
    
            # 学习包的源地址,和交换机上的入端口绑定
            # learn a mac address to avoid FLOOD next time.
            self.mac_to_port[dpid][src] = in_port
    
            # 查看是否已经学习过该目的mac地址
            if dst in self.mac_to_port[dpid]:
                out_port = self.mac_to_port[dpid][dst]
            # 否则进行洪泛
            else:
                out_port = ofproto.OFPP_FLOOD
    
            actions = [parser.OFPActionOutput(out_port)]
    
            # 下发流表处理后续包,不再触发 packet in 事件
            # install a flow to avoid packet_in next time
            if out_port != ofproto.OFPP_FLOOD:
                match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
                # verify if we have a valid buffer_id, if yes avoid to send both
                # flow_mod & packet_out
                if msg.buffer_id != ofproto.OFP_NO_BUFFER:
                    self.add_flow(datapath, 1, match, actions, msg.buffer_id)
                    return
                else:
                    self.add_flow(datapath, 1, match, actions)
            data = None
            if msg.buffer_id == ofproto.OFP_NO_BUFFER:
                data = msg.data
    
            out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
                                      in_port=in_port, actions=actions, data=data)
            # 发送流表
            datapath.send_msg(out)
    

    代码当中的mac_to_port的作用是什么?

    保存mac地址到交换机端口的映射,为交换机自学习功能提供数据结构进行 mac-端口 的存储

    simple_switch和simple_switch_13在dpid的输出上有何不同?

    simple_switch的dpid赋值:dpid = datapath.id

    simple_switch_13的dpid赋值:dpid = format(datapath.id, "d").zfill(16)

    在python console进行测试,可以看到在simple_switch直接获取的id,在simple_switch_13中,会在前端加上0将其填充至16位

    image-20211010093641181

    相比simple_switch,simple_switch_13增加的switch_feature_handler实现了什么功能?

    实现交换机以特性应答消息响应特性请求,可查看文档

    https://ryu.readthedocs.io/en/latest/ofproto_v1_3_ref.html#ryu.ofproto.ofproto_v1_3_parser.OFPSwitchFeatures

    simple_switch_13是如何实现流规则下发的?

    在接收到packetin事件后,首先获取包学习,交换机信息,以太网信息,协议信息等。如果以太网类型是LLDP类型,则不予处理。如果不是,则获取源端口目的端口,以及交换机id,先学习源地址对应的交换机的入端口,再查看是否已经学习目的mac地址,如果没有则进行洪泛转发。如果学习过该mac地址,则查看是否有buffer_id,如果有的话,则在添加流动作时加上buffer_id,向交换机发送流表。

    总结

    本次实验难度较难,主要在于对openflow协议的理解,以及对Ryu源码的熟悉程度。在实验过程中,遇到如下问题:

    • 在用Ryu的L2Switch模块下发流表时,看到洪泛现像,但是在交换机上没有看到流表,在请教老师之后才知道,这才是Ryu与POX之间的差别
    • 在分析simple_switch.py和simple_switch_13.py源码时,遇到困难,不理解函数的作用,在查看官方文档,以及搜索相关资料之后,对源码的理解相对透彻了些

    这次实验相比上次难度更大,对源码分析和对openflow协议的理解有一定的要求,但是做完实验后感受到收获颇多,学习到了更多的知识。

  • 相关阅读:
    C++中的explicitkeyword
    SQLite数据库查看工具(免费)
    C Tricks(十九)—— 求以任意数为底的对数
    分治法(divide & conquer)与动态规划(dynamic programming)应用举例
    分治法(divide & conquer)与动态规划(dynamic programming)应用举例
    C++组合数(combination)的实现
    C++组合数(combination)的实现
    算法求解方法与思路的总结
    算法求解方法与思路的总结
    使用 STL 辅助解决算法问题
  • 原文地址:https://www.cnblogs.com/JoshuaYu/p/15388698.html
Copyright © 2020-2023  润新知