什么可持久化树套树才不会写呢,K-D Tree大法吼啊
对于第(i)个数,设其前面最后的与它值相同的位置为(pre_i),其后面最前的与它值相同的位置为(aft_i),那么对于一个询问((l,r))和一个位置(i),需要同时满足(pre_i < l leq i leq r < aft_i)时,第(i)个位置的值才能产生贡献。
将((pre_i , i , aft_i))看作三维空间中的一个点,那么能够产生贡献的一些点就会在一个立方体范围内。使用K-D Tree进行搜索即可。
记得要加一些剪枝,比如当前访问的区域的最大值比当前答案小就退出等
记得一定不要把nth_element(n + l , n + mid , n + r + 1)
写成nth_elemet(n + l , n + r + 1 , n + mid)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
//This code is written by Itst
using namespace std;
inline int read(){
int a = 0;
char c = getchar();
bool f = 0;
while(!isdigit(c) && c != EOF){
if(c == '-')
f = 1;
c = getchar();
}
if(c == EOF)
exit(0);
while(isdigit(c)){
a = a * 10 + c - 48;
c = getchar();
}
return f ? -a : a;
}
const int MAXN = 1e5 + 7;
struct node{
int pos[3] , val;
}nd[MAXN];
int N , M , lastans , ind[MAXN];
int pre[MAXN] , ch[MAXN][2] , maxV[MAXN] , maxP[MAXN][3] , minP[MAXN][3];
bool cmp0(node a , node b){return a.pos[0] < b.pos[0];}
bool cmp1(node a , node b){return a.pos[1] < b.pos[1];}
bool cmp2(node a , node b){return a.pos[2] < b.pos[2];}
inline int pushup(int x){
memcpy(maxP[x] , nd[x].pos , sizeof(nd[x].pos));
memcpy(minP[x] , nd[x].pos , sizeof(nd[x].pos));
maxV[x] = nd[x].val;
for(int p = 0 ; p < 2 ; ++p)
if(ch[x][p]){
maxV[x] = max(maxV[x] , maxV[ch[x][p]]);
for(int i = 0 ; i < 3 ; ++i){
maxP[x][i] = max(maxP[x][i] , maxP[ch[x][p]][i]);
minP[x][i] = min(minP[x][i] , minP[ch[x][p]][i]);
}
}
return x;
}
int build(int l , int r , int tp){
if(l > r) return 0;
if(l == r) return pushup(l);
int mid = (l + r) >> 1;
nth_element(nd + l , nd + mid , nd + r + 1 , tp == 0 ? cmp0 : (tp == 1 ? cmp1 : cmp2));
ch[mid][0] = build(l , mid - 1 , (tp + 1) % 3);
ch[mid][1] = build(mid + 1 , r , (tp + 1) % 3);
return pushup(mid);
}
long long cnt;
void query(int cur , int a , int b){
if(minP[cur][0] >= a || maxP[cur][2] <= b || minP[cur][1] > b || maxP[cur][1] < a || maxV[cur] <= lastans) return;
if(maxP[cur][0] < a && minP[cur][2] > b && minP[cur][1] >= a && maxP[cur][1] <= b){
lastans = maxV[cur]; return;
}
if(nd[cur].pos[0] < a && nd[cur].pos[1] >= a && nd[cur].pos[1] <= b && nd[cur].pos[2] > b)
lastans = max(lastans , nd[cur].val);
query(ch[cur][0] , a , b); query(ch[cur][1] , a , b);
}
int main(){
#ifndef ONLINE_JUDGE
freopen("in","r",stdin);
freopen("out","w",stdout);
#endif
N = read(); M = read();
for(int i = 1 ; i <= N ; ++i){
nd[i].pos[1] = i;
int a = nd[i].val = read();
nd[i].pos[0] = pre[a]; nd[pre[a]].pos[2] = i;
pre[a] = i;
}
for(int i = 1 ; i <= N ; ++i)
nd[pre[i]].pos[2] = N + 1;
int rt = build(1 , N , 0);
while(M--){
int x = (read() + lastans) % N + 1 , y = (read() + lastans) % N + 1;
if(x > y) x ^= y ^= x ^= y;
lastans = 0;
query(rt , x , y);
printf("%d
" , lastans);
}
return 0;
}