• UCF Locals 2015



    一开始在搞什么贪心,其实这个数据量就应该是搜索。先确定中心点的位置有至多49个,而其中状态不能确定的只有25个。在搜索到已经被覆盖的状态时直接往下一步走就可以了。

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    
    int n, m;
    char g[15][15];
    char vis[15][15];
    
    struct Cross {
        int x, y;
        int p;
        bool operator<(const Cross &c)const {
            return p < c.p;
        }
    } c[60];
    int ctop;
    
    inline void update(const int &i, const int &j, int &rest) {
        ++vis[i][j];
        if(vis[i][j] == 1) {
            rest -= 1;
        }
    }
    
    inline void unupdate(const int &i, const  int &j, int &rest) {
        --vis[i][j];
        if(vis[i][j] == 0) {
            rest += 1;
        }
    }
    
    inline void Update(const int &i, const  int &j, int &rest) {
        update(i, j, rest);
        update(i + 1, j, rest);
        update(i, j + 1, rest);
        update(i - 1, j, rest);
        update(i, j - 1, rest);
    }
    
    inline void UnUpdate(const int &i, const  int &j, int &rest) {
        unupdate(i, j, rest);
        unupdate(i + 1, j, rest);
        unupdate(i, j + 1, rest);
        unupdate(i - 1, j, rest);
        unupdate(i, j - 1, rest);
    }
    
    int ans;
    inline void add_cross(int i, int j) {
        if(g[i][j] != '#' || g[i - 1][j] != '#' || g[i][j - 1] != '#' || g[i + 1][j] != '#' || g[i][j + 1] != '#')
            return;
        ++ans;
        ++vis[i][j];
        ++vis[i - 1][j];
        ++vis[i][j - 1];
        ++vis[i + 1][j];
        ++vis[i][j + 1];
        ++ctop;
        c[ctop].x = i;
        c[ctop].y = j;
        c[ctop].p = min(min(i - 1, j - 1), min(n - i, m - j));
    }
    
    void dfs(int id, int cur, int rest) {
        /*printf("cur=%d
    ", cur);
        for(int i = 1; i <= n; ++i) {
            for(int j = 1; j <= m; ++j) {
                if(g[i][j] == '.')
                    printf("%c", '.');
                else {
                    if(vis[i][j]) {
                        printf("%c", '*');
                    } else {
                        printf("%c", '#');
                    }
                }
            }
            puts("");
        }
        puts("");*/
    
        if(rest == 0) {
            ans = min(ans, cur);
            return;
        }
    
        //最优性剪枝+可行性剪枝
        if(cur + (rest + 4) / 5 >= ans)
            return;
    
        int x = c[id].x, y = c[id].y;
    
        if(id == ctop) {
            ++cur;
            Update(x, y, rest);
            if(rest == 0)
                ans = min(ans, cur);
            UnUpdate(x, y, rest);
            --cur;
            return;
        }
    
        int cntempty = 0;
        cntempty += (vis[x][y] == 0);
        cntempty += (vis[x - 1][y] == 0);
        cntempty += (vis[x][y - 1] == 0);
        cntempty += (vis[x + 1][y] == 0);
        cntempty += (vis[x][y + 1] == 0);
    
        //优化2:根据没有覆盖的格子数进行判断优先搜索左子树还是右子树,这个值低则更容易覆盖满并更新答案,但也有可能浪费一步
        if(cntempty >= 2) {
            ++cur;
            Update(x, y, rest);
            dfs(id + 1, cur, rest);
            UnUpdate(x, y, rest);
            --cur;
    
            dfs(id + 1, cur, rest);
        } else {
            dfs(id + 1, cur, rest);
    
            ++cur;
            Update(x, y, rest);
            dfs(id + 1, cur, rest);
            UnUpdate(x, y, rest);
            --cur;
        }
        return;
    }
    
    int main() {
    #ifdef Yinku
        freopen("Yinku.in", "r", stdin);
    #endif // Yinku
        int T;
        scanf("%d", &T);
        for(int ti = 1; ti <= T; ++ti) {
            memset(vis, 0, sizeof(vis));
            scanf("%d%d", &n, &m);
            for(int i = 1; i <= n; ++i) {
                scanf("%s", g[i] + 1);
            }
    
            int rest = 0;
            for(int i = 1; i <= n ; ++i) {
                for(int j = 1; j <= m ; ++j) {
                    if(g[i][j] == '#') {
                        ++rest;
                    }
                }
            }
    
            ans = 0, ctop = 0;
            for(int i = 2; i <= n - 1; ++i) {
                for(int j = 2; j <= m - 1; ++j) {
                    if(g[i][j] == '#') {
                        add_cross(i, j);
                    }
                }
            }
    
            bool suc = true;
            for(int i = 1; i <= n ; ++i) {
                for(int j = 1; j <= m ; ++j) {
                    if(g[i][j] == '#' && vis[i][j] == 0) {
                        suc = false;
                        break;
                    }
                }
                if(!suc)
                    break;
            }
    
            printf("Image #%d: ", ti);
            if(!suc) {
                puts("impossible");
            } else {
                memset(vis, 0, sizeof(vis));
    
                //最外圈的是必选的,可以立刻剪掉,搭配优化2可以将搜索的规模限制在5*5内
                int cur = 0;
                for(int j = 1; j <= m ; ++j) {
                    if(g[1][j] == '#' && vis[1][j] == 0) {
                        ++cur;
                        Update(2, j, rest);
                    }
                    if(g[n][j] == '#' && vis[n][j] == 0) {
                        ++cur;
                        Update(n - 1, j, rest);
                    }
                }
                for(int i = 1; i <= n ; ++i) {
                    if(g[i][1] == '#' && vis[i][1] == 0) {
                        ++cur;
                        Update(i, 2, rest);
                    }
                    if(g[i][m] == '#' && vis[i][m] == 0) {
                        ++cur;
                        Update(i, m - 1, rest);
                    }
                }
    
                //打乱相邻节点的顺序,可能是负优化因为相邻节点或许可以优先走不印
                //random_shuffle(c + 1, c + 1 + ctop);
                sort(c + 1, c + 1 + ctop);
                dfs(1, cur, rest);
                printf("%d
    ", ans);
            }
            puts("");
        }
    }
    

    网络流,最大权闭合子图。要像下面这样建图:

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    
    /* dinic begin */
    
    const int MAXN = 20100;
    const int MAXM = 200100;
    //注意网络流要预留反向边
    const int INF = 0x3f3f3f3f;
    struct Edge {
        int to, next, cap, flow;
    } edge[MAXM];
    
    int tol;
    int head[MAXN];
    
    void init() {
        tol = 2;
        memset(head, -1, sizeof(head));
    }
    
    void addedge(int u, int v, int w, int rw = 0) {
        edge[tol].to = v;
        edge[tol].cap = w;
        edge[tol].flow = 0;
        edge[tol].next = head[u];
        head[u] = tol++;
        edge[tol].to = u;
        edge[tol].cap = rw;
        edge[tol].flow = 0;
        edge[tol].next = head[v];
        head[v] = tol++;
    }
    
    int Q[MAXN];
    int dep[MAXN], cur[MAXN], sta[MAXN];
    bool bfs(int s, int t, int n) {
        int front = 0, tail = 0;
        memset(dep, -1, sizeof(dep[0]) * (n + 1));
        dep[s] = 0;
        Q[tail++] = s;
        while(front < tail) {
            int u = Q[front++];
            for(int i = head[u]; i != -1; i = edge[i].next) {
                int v = edge[i].to;
                if(edge[i].cap > edge[i].flow && dep[v] == -1) {
                    dep[v] = dep[u] + 1;
                    if(v == t)
                        return true;
                    Q[tail++] = v;
                }
            }
        }
        return false;
    }
    
    int dinic(int s, int t, int n = -1) {
        int maxflow = 0;
        if(n == -1)
            n = t;
        n++;//假如把t作为编号最后的点的话传入t就可以了
        while(bfs(s, t, n)) {
            for(int i = 0; i < n; i++)
                cur[i] = head[i];
            int u = s, tail = 0;
            while(cur[s] != -1) {
                if(u == t) {
                    int tp = INF;
                    for(int i = tail - 1; i >= 0; i--) {
                        tp = min(tp, edge[sta[i]].cap - edge[sta[i]].flow);
    
                    }
                    maxflow += tp;
                    for(int i = tail - 1; i >= 0; i--) {
                        edge[sta[i]].flow += tp;
                        edge[sta[i] ^ 1].flow -= tp;
                        if(edge[sta[i]].cap - edge[sta[i]].flow == 0)
                            tail = i;
                    }
                    u = edge[sta[tail] ^ 1].to;
    
                } else if(cur[u] != -1 && edge[cur[u]].cap > edge[cur[u]].flow
                          && dep[u] + 1 == dep[edge[cur[u]].to]) {
                    sta[tail++] = cur[u];
                    u = edge[cur[u]].to;
                } else {
                    while(u != s && cur[u] == -1) {
                        u = edge[sta[--tail] ^ 1].to;
                    }
                    cur[u] = edge[cur[u]].next;
                }
            }
        }
        return maxflow;
    }
    
    /* dinic end */
    
    
    int main() {
    #ifdef Yinku
        freopen("Yinku.in", "r", stdin);
    #endif // Yinku
        int T;
        scanf("%d", &T);
        for(int ti = 1; ti <= T; ++ti) {
            int n;
            scanf("%d", &n);
            double tmp;
            init();
            int sum = 0;
            for(int i = 1; i <= n; ++i) {
                scanf("%lf", &tmp);
                int t = round(tmp * 100);
                addedge(0, i, t);
                sum += t;
                //cout << t << endl;
            }
            for(int i = 1; i <= n; ++i) {
                scanf("%lf", &tmp);
                int t = round(tmp * 100);
                addedge(i, n + n * n + n * n + 1, t);
                sum += t;
                //cout << t << endl;
            }
            for(int i = 1; i <= n; ++i) {
                for(int j = 1; j <= n; ++j) {
                    scanf("%lf", &tmp);
                    int t = round(tmp * 100);
                    addedge(n + (i - 1)*n + j, i, INF);
                    addedge(n + (i - 1)*n + j, j, INF);
                    addedge(0,  n + (i - 1)*n + j, t);
                    sum += t;
                    //cout << t << endl;
                    addedge(i,  n + n * n + (i - 1)*n + j, INF);
                    addedge(j,  n + n * n + (i - 1)*n + j, INF);
                    addedge(n + n * n + (i - 1)*n + j,  n + n * n + n * n + 1, t);
                    sum += t;
                }
            }
    
            //cout << "sum=" << sum << endl;
            printf("%.2f
    ", (sum - dinic(0,  n + n * n + n * n + 1)) / 100.0);
        }
    }
    
  • 相关阅读:
    Enterprise Library 企业库 V4.1
    跨域实现IFRAME自适应高度
    微软企业库4.1学习笔记(二)各功能之间的依赖关系以及对象创建
    微软企业库4.1学习笔记(三)企业库迁移和并行使用,以及企业库的扩展
    微软企业库4.1学习笔记(五)对象创建和依赖注入方法
    判断 iframe 是否加载完成的完美方法
    对JavaScript调用堆栈和setTimeout用法的深入研究
    工作流技术杂谈
    企业流程管理平台V2.0介绍(.NET平台下的工作流)
    c#操作oracle lob字段[转自 芽芽的回收站]
  • 原文地址:https://www.cnblogs.com/Inko/p/11458370.html
Copyright © 2020-2023  润新知