1.Java容器
1.1.同步容器
Vector
ArrayList是最常用的List实现类,内部是通过数组实现的,它允许对元素进行快速随机访问。数组的缺点是每个元素之间不能有间隔,当数组大小不满足时需要增加存储能力,就要讲已经有数组的数据复制到新的存储空间中。当从ArrayList的中间位置插入或者删除元素时,需要对数组进行复制、移动、代价比较高。因此,它适合随机查找和遍历,不适合插入和删除。
Vector与ArrayList一样,也是通过数组实现的,不同的是它支持线程的同步,即某一时刻只有一个线程能够写Vector,避免多线程同时写而引起的不一致性,但实现同步需要很高的花费,因此,访问它比访问ArrayList慢
注意: Vector线程安全,数组的扩容默认2倍,可以自定义。而ArrayList数组的扩容是1.5倍
Vector源码类
Add方法源码类
1 public synchronized boolean add(E e) { 2 modCount++; 3 ensureCapacityHelper(elementCount + 1); 4 elementData[elementCount++] = e; 5 return true; 6 }
Arraylist源码
Add方法源码
1 public boolean add(E e) { 2 ensureCapacityInternal(size + 1); // Increments modCount!! 3 elementData[size++] = e; 4 return true; 5 }
HashTable
HashMap是一个接口 是map接口的子接口,是将键映射到值的对象,其中键和值都是对象,并且不能包含重复键,但可以包含重复值。HashMap允许null key和null value,而hashtable不允许。
HashTable是线程安全的一个Collection。
HashMap是Hashtable的轻量级实现(非线程安全的实现),他们都完成了Map接口,主要区别在于HashMap允许空(null)键值(key),由于非线程安全,效率上可能高于Hashtable。
HashMap允许将null作为一个entry的key或者value,而Hashtable不允许。
HashMap把Hashtable的contains方法去掉了,改成containsvalue和containsKey。
注意: HashTable 是线程安全的,HashMap是线程不安全的
HashTable源码类
put方法源码类
1 public synchronized V put(K key, V value) { 2 // Make sure the value is not null 3 if (value == null) { 4 throw new NullPointerException(); 5 } 6 7 // Makes sure the key is not already in the hashtable. 8 Entry<?,?> tab[] = table; 9 int hash = key.hashCode(); 10 int index = (hash & 0x7FFFFFFF) % tab.length; 11 @SuppressWarnings("unchecked") 12 Entry<K,V> entry = (Entry<K,V>)tab[index]; 13 for(; entry != null ; entry = entry.next) { 14 if ((entry.hash == hash) && entry.key.equals(key)) { 15 V old = entry.value; 16 entry.value = value; 17 return old; 18 } 19 } 20 21 addEntry(hash, key, value, index); 22 return null; 23 }
HashMap源码类
put方法源码类
1 public V put(K key, V value) { 2 3 return putVal(hash(key), key, value, false, true); 4 5 }
Collections.synchronized*()
Collections类下的synchronized* 方法可以将不安全的集合变成线程安全的集合
例如:
1 Collections.synchronizedMap(new HashMap<>(10)); 2 Collections.synchronizedList(new ArrayList<>()); 3 Collections.synchronizedSet(new HashSet<>());
1.2.并发容器
ConcurrentHashMap
ConcurrentHashMap与HashMap一样是一个哈希表,但是它使用完全不同的锁策略,可以提供更好的并发性和可伸缩性。在ConcurrentHashMap以前,程序使用一个公共锁同步一个方法,并严格地控制只能在一个线程中可以同时访问容器,而ConcurrentHashMap使用一个更为细化的锁机制,名叫分离锁。这个机制允许任意数量的读线程可以并发访问Map,读者和写者也可以并发访问Map,并且有限数量的写进程还可以并发修改Map,结果是为并发访问带来更高的吞吐量,同时几乎没有损失单个线程访问的性能。
ConcurrentHashMap是由Segment数组结构和HashEntry数组结构组成。Segment是一种可重入锁ReentrantLock,在ConcurrentHshMap里扮演锁的角色,HashEntry则用于存储键值对数据。一个ConcurrentHashMap里包含一个Segment数组,Segment的结构和HashMap类似,是一种数组和链表结构,一个Segment里包含一个HashEntry数组,每一个HashEntry是一个链表结构的元素,每个Segment守护着HashEntry数组里的元素,当对HashEntry数组的数据进行修改时,必须首先获得它对应的Segment的锁。
注意:ConcurrentHashMap是线程安全的,由于代码中大多数全局变量使用volatile关键字声明,所以性能较好
ConcurrentSkipListMap
ConcurrentSkipListMap是在ConcurrentHashMap的基础上,增加了排序功能
2.Java并发队列
2.1.ConcurrentLinkedQueue
ConcurrentLinkedQueue:是一个适用于高并发场景下的队列,通过无所的方式,实现了高并发状态下的高性能,通常ConcurrentLinkedQueue性能好于BlockingQueue。他是一个基于连接节点的无界线程安全队列。该队列的线程遵循FIFO的原则,不允许null元素。
add 和offer() 都是加入元素的方法(在ConcurrentLinkedQueue中这俩个方法没有任何区别)
poll() 和peek() 都是取头元素节点,区别在于前者会删除元素,后者不会。
2.2.BlockingQueue
阻塞队列(BlockingQueue)是一个支持两个附加操作的队列。这两个附加的操作是:
在队列为空时,获取元素的线程会等待队列变为非空。
当队列满时,写入(存储)元素的线程会等待队列可用。
在Java中,BlockingQueue的接口位于java.util.concurrent 包中(在Java5版本开始提供),由上面介绍的阻塞队列的特性可知,阻塞队列是线程安全的。
在新增的Concurrent包中,BlockingQueue很好的解决了多线程中,如何高效安全“传输”数据的问题。通过这些高效并且线程安全的队列类,为我们快速搭建高质量的多线程程序带来极大的便利。本文详细介绍了BlockingQueue家庭中的所有成员,包括他们各自的功能以及常见使用场景。
常用的队列主要有以下两种:(当然通过不同的实现方式,还可以延伸出很多不同类型的队列,DelayQueue就是其中的一种)
先进先出(FIFO):先插入的队列的元素也最先出队列,类似于排队的功能。从某种程度上来说这种队列也体现了一种公平性。
后进先出(LIFO):后插入队列的元素最先出队列,这种队列优先处理最近发生的事件。
多线程环境中,通过队列可以很容易实现数据共享,比如经典的“生产者”和“消费者”模型中,通过队列可以很便利地实现两者之间的数据共享。假设我们有若干生产者线程,另外又有若干个消费者线程。如果生产者线程需要把准备好的数据共享给消费者线程,利用队列的方式来传递数据,就可以很方便地解决他们之间的数据共享问题。但如果生产者和消费者在某个时间段内,万一发生数据处理速度不匹配的情况呢?理想情况下,如果生产者产出数据的速度大于消费者消费的速度,并且当生产出来的数据累积到一定程度的时候,那么生产者必须暂停等待一下(阻塞生产者线程),以便等待消费者线程把累积的数据处理完毕,反之亦然。然而,在concurrent包发布以前,在多线程环境下,我们每个程序员都必须去自己控制这些细节,尤其还要兼顾效率和线程安全,而这会给我们的程序带来不小的复杂度。好在此时,强大的concurrent包横空出世了,而他也给我们带来了强大的BlockingQueue。(在多线程领域:所谓阻塞,在某些情况下会挂起线程(即阻塞),一旦条件满足,被挂起的线程又会自动被唤醒)
ArrayBlockingQueue
ArrayBlockingQueue是一个有边界的阻塞队列,它的内部实现是一个数组。有边界的意思是它的容量是有限的,我们必须在其初始化的时候指定它的容量大小,容量大小一旦指定就不可改变。
ArrayBlockingQueue是以先进先出的方式存储数据,最新插入的对象是尾部,最新移出的对象是头部。下面是一个初始化和使用ArrayBlockingQueue的例子:
LinkedBlockingQueue
LinkedBlockingQueue阻塞队列大小的配置是可选的,如果我们初始化时指定一个大小,它就是有边界的,如果不指定,它就是无边界的。说是无边界,其实是采用了默认大小为Integer.MAX_VALUE的容量 。它的内部实现是一个链表。
和ArrayBlockingQueue一样,LinkedBlockingQueue 也是以先进先出的方式存储数据,最新插入的对象是尾部,最新移出的对象是头部。
PriorityBlockingQueue
PriorityBlockingQueue是一个没有边界的队列,它的排序规则和 java.util.PriorityQueue一样。需要注意,PriorityBlockingQueue中允许插入null对象。
所有插入PriorityBlockingQueue的对象必须实现 java.lang.Comparable接口,队列优先级的排序规则就是按照我们对这个接口的实现来定义的。
另外,我们可以从PriorityBlockingQueue获得一个迭代器Iterator,但这个迭代器并不保证按照优先级顺序进行迭代。
SynchronousQueue
SynchronousQueue队列内部仅允许容纳一个元素。当一个线程插入一个元素后会被阻塞,除非这个元素被另一个线程消费。