问题描述:不使用+是或-操作符进行整数的加法运算
int getSum(int a, int b);
我的思路:把整数化成二进制进行运算,注意类型是int,也就是要考虑负数。关于负数的二进制表示可见之前的一篇博文
对于负数,我采用转换成正数(unsigned int,简称uint)的运算,也就是先实现uint的加法(plus)和减法(minus),再把int转换成uint进行运算。
一共4种情况,用实例说明,假使两个int绝对值为1和2,这4种情况及其处理如下:
1 + 2 = plus(1, 2) = 3
1 + (-2) = minus(1, 2) = -minus(2, 1) = -1
(-1) + 2 = minus(2, 1) = 1
(-1) + (-2) = -puls(1, 2) = -3
也就是说关键是uint的加减法。
第一步,要转换成二进制来运算,使用std::bitset
C++为了方面二进制运算提供了bitset<size_t>,http://www.cplusplus.com/reference/bitset/bitset/
模板参数为位数bits,32位/64位等。然后实现了[]的重载,operator[](int)返回一个伪引用类型或bool。
bool operator[] (size_t pos) const; reference operator[] (size_t pos);
其中reference类型实现了和bool的转换,以及operator~来进行反转(0变成1,1变成0)。参数pos是从最低位开始的,比如对bitset<32> i(2);那么i[1]就是1。
bitset可以接收unsigned long long作为构造参数,并且可以用to_ulong()方法返回unsigned long,以及to_ullong()方法返回unsigned long long。
第二步,二进制间加如何运算?
二进制的运算很简单,只需考虑11、10、01、00四种情况,但是对加法来说需要进位,对减法来说需要退位。
加法运算
用bool flag来判断是否进位,false(初始值)则不需要进位,true则在下一位运算时需要考虑进位。
flag为false时:01、10 => 1;00、11 => 0;其中11 => flag: true。
flag为true时:00 => 1, flag: false(完成进位);01、10 => 0;11 => 1(需要继续进位)。
直到进行到最高位的更高一位为止。
减法运算
同样用bool flag来判断是否退位,由于减法运算可能产生负数,需要事先判断a - b中a是否小于b,若小于b则需要交换,并且返回结果的相反数。
flag为false时:11、00 => 0; 10、01 => 1;其中01 => flag: true。
flag为true时:10 => 0, flag: false(完成退位);11、00 => 1,01 => 0(需要继续退位)。
解法:
class Solution { public: int getSum(int a, int b) { if (a >= 0 && b >= 0) return this->plus(a, b); else if (a < 0 && b < 0) return -this->plus(-a, -b); else if (a >= 0 && b < 0) return this->minus(a, -b); else return this->minus(b, -a); } private: int plus(unsigned int a, unsigned int b) { int n = (a >= b) ? (log2(a) + 2) : (log2(b) + 2); bitset<32> binA(a), binB(b), res(0); bool flag = false; for (int i = 0; i < n; ++i) { auto _a = binA[i]; auto _b = binB[i]; if (flag) { res[i] = !(_a ^ _b); flag = _a || _b; // (0,0):false } else { res[i] = _a ^ _b; flag = _a && _b; // (1,1):true } } return res.to_ulong(); } int minus(unsigned int a, unsigned int b) { if (a < b) return -minus(b, a); int n = log2(a) + 2; bitset<32> binA(a), binB(b), res(0); bool flag = false; for (int i = 0; i < n; ++i) { auto _a = binA[i]; auto _b = binB[i]; if (!(_a ^ _b)) res[i] = flag ? 1 : 0; else { // (1,0) or (0,0) res[i] = flag ? 0 : 1; flag = (!_a) && _b; // (0,1):true (1,0):false } } return res.to_ulong(); } };
稍微细心点可以发现减法运算时我并没有先判断flag而是先判断_a ^ _b,对比下判断flag的代码就明白了
if (flag) { res[i] = !(_a ^ _b); flag = !(_a & !_b); // (1,0):false } else { res[i] = _a ^ _b; flag = (!_a) & _b; // (0,1):true }
无论flag是true还是false,对flag不应该采取“重新计算”的态度,而是“是否改变”的态度,因为不进行操作的话flag的值就会传递到下次运算,也就是之前描述的【需要继续进位/退位】。如果进行一次操作来计算flag得到一样的结果是多此一举。
下面的代码测试用时是2ms,而上面的代码则是0ms,也是绝大多数人的用时。
更为简洁的解法:
int getSum(int a, int b) { int sum = a; while (b != 0) { sum = a ^ b;//calculate sum of a and b without thinking the carry b = (a & b) << 1;//calculate the carry a = sum;//add sum(without carry) and carry } return sum; }
这是看讨论区发现的https://discuss.leetcode.com/topic/49829/share-my-c-solutions-easy-to-understand/8
该做法并没有像我很自然想到的从低位到高位去算,而是进一步归纳,利用加法的本质,把不进位和进位运算分离开来。
关键性质:(a ^ b) + ((a & b) << 1) = a + b
举例来形象说明:
a = 11010 = 01000 + 10010 = a1 + common = a1 + (a & b)
b = 10011 = 00001 + 10010 = b1 + common = b1 + (a & b)
把两个数分解成2部分,common为对应位均为1的公共部分,由于11运算会导致进位,所以把它分离出来。
不进位的运算就是XOR运算,因为0 + 0 = 0 ^0 = 0, 0 + 1 = 0 ^ 1 = 1,并且不会产生进位。
而进位运算相当于2个common相加,common可以靠a&b求得,进位运算即(a & b) << 1。
迭代收敛的条件是a & b = 0,那么问题来了:最后为什么迭代会收敛?
反证法,什么时候迭代不会收敛?也就是b永远无法到达0。
暂且考虑正整数的情况:
设f(x)为x的二进制表示中1的个数,则f((a & b) << 1) = f(a & b) <= min{f(a), f(b)}。因为a&b是抽离出公共的1,而a、b至少有0个独有的1。
当且仅当a == b时取等号。
1、假设循环到某一步时a == b,则a ^ b = 0,下一步后a = 0。
再下一步,把(a & b) << 1的结果赋值给b,由于和0做AND运算会变成0,此时b为0,迭代收敛;
2、假设循环中一直a != b,那么new_b < old_b即new_b <= old_b - 1,由于b为整数,最后必定到达0,迭代收敛。
遗留问题:a、b为负数时的收敛证明?