1.理解分类与监督学习、聚类与无监督学习。
简述分类与聚类的联系与区别。
答: 分类是事先定义好类别 ,类别数不变 ,属于有监督学习;
聚类则没有事先预定的类别,类别数不确定,属于非监督学习。
简述什么是监督学习与无监督学习。
答:监督学习(supervised learning):通过已有的训练样本(即已知数据以及其对应的输出)来训练,从而得到一个最优模型,再利用这个模型将所有新的数据样本映射为相应的输出结果,对输出结果进行简单的判断从而实现分类的目的,那么这个最优模型也就具有了对未知数据进行分类的能力。
无监督学习中,数据是没有标签的或者是有一样的标签的。我们不知道数据的含义和作用,只知道是有一个数据集的。数据集可以判断是有两个数据集,自己进行分类,这就是聚类学习。
2.朴素贝叶斯分类算法 实例
利用关于心脏病患者的临床历史数据集,建立朴素贝叶斯心脏病分类模型。
有六个分类变量(分类因子):性别,年龄、KILLP评分、饮酒、吸烟、住院天数
目标分类变量疾病:
–心梗
–不稳定性心绞痛
新的实例:–(性别=‘男’,年龄<70, KILLP=‘I',饮酒=‘是’,吸烟≈‘是”,住院天数<7)
最可能是哪个疾病?
上传手工演算过程。
性别 |
年龄 |
KILLP |
饮酒 |
吸烟 |
住院天数 |
疾病 |
|
1 |
男 |
>80 |
1 |
是 |
是 |
7-14 |
心梗 |
2 |
女 |
70-80 |
2 |
否 |
是 |
<7 |
心梗 |
3 |
女 |
70-81 |
1 |
否 |
否 |
<7 |
不稳定性心绞痛 |
4 |
女 |
<70 |
1 |
否 |
是 |
>14 |
心梗 |
5 |
男 |
70-80 |
2 |
是 |
是 |
7-14 |
心梗 |
6 |
女 |
>80 |
2 |
否 |
否 |
7-14 |
心梗 |
7 |
男 |
70-80 |
1 |
否 |
否 |
7-14 |
心梗 |
8 |
女 |
70-80 |
2 |
否 |
否 |
7-14 |
心梗 |
9 |
女 |
70-80 |
1 |
否 |
否 |
<7 |
心梗 |
10 |
男 |
<70 |
1 |
否 |
否 |
7-14 |
心梗 |
11 |
女 |
>80 |
3 |
否 |
是 |
<7 |
心梗 |
12 |
女 |
70-80 |
1 |
否 |
是 |
7-14 |
心梗 |
13 |
女 |
>80 |
3 |
否 |
是 |
7-14 |
不稳定性心绞痛 |
14 |
男 |
70-80 |
3 |
是 |
是 |
>14 |
不稳定性心绞痛 |
15 |
女 |
<70 |
3 |
否 |
否 |
<7 |
心梗 |
16 |
男 |
70-80 |
1 |
否 |
否 |
>14 |
心梗 |
17 |
男 |
<70 |
1 |
是 |
是 |
7-14 |
心梗 |
18 |
女 |
70-80 |
1 |
否 |
否 |
>14 |
心梗 |
19 |
男 |
70-80 |
2 |
否 |
否 |
7-14 |
心梗 |
20 |
女 |
<70 |
3 |
否 |
否 |
<7 |
不稳定性心绞痛 |
3.使用朴素贝叶斯模型对iris数据集进行花分类。
尝试使用3种不同类型的朴素贝叶斯:
- 高斯分布型
- 多项式型
- 伯努利型
并使用sklearn.model_selection.cross_val_score(),对各模型进行交叉验证。
from sklearn.datasets import load_iris
from sklearn.naive_bayes import GaussianNB, MultinomialNB, BernoulliNB
from sklearn.model_selection import cross_val_score
iris=load_iris()
# 分割数据集
data = iris['data']
target = iris['target']
# 1.高斯分布型
# 构建模型
GNB_model = GaussianNB()
# 训练模型
GNB_model.fit(data, target)
# 预测模型
GNB_pre = GNB_model.predict(data)
# 进行交叉验证
GNB_score = cross_val_score(GNB_model, data, target, cv=10)
print("高斯分布型的朴素贝叶斯:")
print("进行交叉验证后,模型的平均精度:%.2f " % GNB_score.mean())
# 2.多项式型
# 构建模型
MNB_model = MultinomialNB()
# 训练模型
MNB_model.fit(data, target)
# 预测模型
MNB_pre = MNB_model.predict(data)
# 进行交叉验证
MNB_score = cross_val_score(MNB_model, data, target, cv=10)
print("多项式型的朴素贝叶斯:")
print("进行交叉验证后,模型的平均精度:%.2f " % MNB_score.mean())
# 3.伯努利型
# 构建模型
BNB_model = BernoulliNB()
# 训练模型
BNB_model.fit(data, target)
# 预测模型
BNB_pre = BNB_model.predict(data)
# 进行交叉验证
BNB_score = cross_val_score(BNB_model, data, target, cv=10)
print("伯努利型的朴素贝叶斯:")
print("进行交叉验证后,模型的平均精度:%.2f " % BNB_score.mean())