题面
[left(sum_{i=1}^nsum_{j=1}^n varphi(gcd(i,j)) ight)mod 10^9+7 ]
数据范围:(1le nle 10^{10})。
蒟蒻语
考场爆零真开森。
本来以为要卷 (1*1),没想到真要卷 (1*1),只不过要一个一个卷……
考场上还以为要洲阁 ( t Min\_25)。
正解
先莫反操作一发:
[egin{split}
&sum_{i=1}^nsum_{j=1}^n varphi(gcd(i,j))\
=&sum_{d=1}^n varphi(d)sum_{i=1}^{lfloorfrac{n}{d}
floor}sum_{j=1}^{lfloorfrac{n}{d}
floor}epsilon(gcd(i,j))\
=&sum_{d=1}^nvarphi(d)sum_{k=1}^{lfloorfrac{n}{d}
floor}mu(k)lfloorfrac{n}{dk}
floor^2\
=&sum_{T=1}^nlfloorfrac{n}{T}
floor^2sum_{d|T}varphi(d)mu(frac{T}{d})\
end{split}
]
整除分块左边,右边杜教。
第一次杜教:(f_1=varphi),(g_1=1),(f_1*g_1=id)。
第二次杜教:(f_2=varphi*mu),(g_2=1),(f_2*g_2=varphi=f_1)。
求 (f_2) 会多次调用 (f_1),但是内部调用的函数 (x) 集相等,所以可以一起求:
//Dusieve
bool vis[iN+1];
int duphi[iN+1],dupm[iN+1];
int Phi(ll x){return x<=N?phi[x]:duphi[n/x];}
int Pm(ll x){return x<=N?pm[x]:dupm[n/x];}
void Dusieve(ll x){
if(x<=N||vis[n/x]) return;
vis[n/x]=true;
for(ll l=2,r;l<=x;l=r+1){
r=x/(x/l),Dusieve(x/l);
(duphi[n/x]-=(ll)(r-l+1)*Phi(x/l)%mod)%=mod;
(dupm[n/x]-=(ll)(r-l+1)*Pm(x/l)%mod)%=mod;
}
(duphi[n/x]+=(ll)x%mod*(x%mod+1)/2%mod)%=mod;
(dupm[n/x]+=duphi[n/x])%=mod;
(duphi[n/x]+=mod)%=mod,(dupm[n/x]+=mod)%=mod;
}
还有个问题:怎么线性筛 (varphi*mu)?
其实可以狄利克雷前缀和一下,但是这里有个更妙的方法:
(mu) 与 (varphi) 为积性,(varphi*mu) 必为积性。
根据 (mu) 函数的性质与找规律可得:
[(varphi*mu)(1)=1\
(varphi*mu)(p)=p-2\
(varphi*mu)(p^2)=p(varphi*mu)(p)+(varphi*mu)(1)\
(varphi*mu)(p^3)=p(varphi*mu)(p^2)\
]
然后根据积性函数性质,就可以线性筛了。
时间复杂度 (Theta(n^{frac{2}{3}}))。
代码
取模坑死蒟蒻,细节会有注释。
#include <bits/stdc++.h>
using namespace std;
//Start
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair(a,b)
#define x first
#define y second
#define be(a) a.begin()
#define en(a) a.end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
//Data
const int mod=1e9+7;
ll n; int ans;
//Sieve
const int N=1e7,iN=1e3;
bool np[N+1];
int phi[N+1],pm[N+1],cnt,p[N];
void Sieve(){
np[1]=true,phi[1]=pm[1]=1;
for(int i=2;i<=N;i++){
if(!np[i]) p[cnt++]=i,phi[i]=i-1,pm[i]=i-2;
for(int j=0;j<cnt&&i*p[j]<=N;j++){
np[i*p[j]]=1;
if(i%p[j]==0){
phi[i*p[j]]=(ll)phi[i]*p[j]%mod;
if((i/p[j])%p[j]==0) pm[i*p[j]]=(ll)pm[i]*p[j]%mod;
else pm[i*p[j]]=((ll)pm[i]*p[j]+pm[i/p[j]])%mod;
break;
}
phi[i*p[j]]=(ll)phi[i]*phi[p[j]]%mod;
pm[i*p[j]]=(ll)pm[i]*pm[p[j]]%mod;
}
}
for(int i=2;i<=N;i++)
(phi[i]+=phi[i-1])%=mod,(pm[i]+=pm[i-1])%=mod;
}
//Dusieve
bool vis[iN+1];
int duphi[iN+1],dupm[iN+1];
int Phi(ll x){return x<=N?phi[x]:duphi[n/x];}
int Pm(ll x){return x<=N?pm[x]:dupm[n/x];}
void Dusieve(ll x){
if(x<=N||vis[n/x]) return;
vis[n/x]=true;
for(ll l=2,r;l<=x;l=r+1){
r=x/(x/l),Dusieve(x/l);
(duphi[n/x]-=(ll)(r-l+1)*Phi(x/l)%mod)%=mod;
(dupm[n/x]-=(ll)(r-l+1)*Pm(x/l)%mod)%=mod;
}
(duphi[n/x]+=(ll)x%mod*(x%mod+1)/2%mod)%=mod;
(dupm[n/x]+=duphi[n/x])%=mod;
(duphi[n/x]+=mod)%=mod,(dupm[n/x]+=mod)%=mod;
}
//Main
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n;
Sieve(),Dusieve(n);
// cout<<Pm(n)<<'
';
for(ll l=1,r;l<=n;l=r+1){
r=n/(n/l);
(ans+=(ll)(n/l%mod)*(n/l%mod)%mod*(Pm(r)-Pm(l-1)+mod)%mod)%=mod;
/*
杜教筛是在开始整除分块前开始的,但是为什么这里可以直接Pm调用呢?
蒟蒻的回答:因为杜教筛内部处理了所有n的整除分块的答案。
*/
}
cout<<ans<<'
';
return 0;
}
祝大家学习愉快!