• hdu 3549 Flow Problem


    题目连接

    http://acm.hdu.edu.cn/showproblem.php?pid=3549 

    Flow Problem

    Description

    Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.

    Input

    The first line of input contains an integer T, denoting the number of test cases.
    For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
    Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)

    Output

    For each test cases, you should output the maximum flow from source 1 to sink N.

    Sample Input

    2
    3 2
    1 2 1
    2 3 1
    3 3
    1 2 1
    2 3 1
    1 3 1

    Sample Output

    Case 1: 1
    Case 2: 2

    裸的最大流dinic,测模板。。

    #include<algorithm>
    #include<iostream>
    #include<cstdlib>
    #include<cstring>
    #include<cstdio>
    #include<vector>
    #include<queue>
    #include<map>
    using std::min;
    using std::find;
    using std::sort;
    using std::pair;
    using std::queue;
    using std::vector;
    using std::multimap;
    #define pb(e) push_back(e)
    #define sz(c) (int)(c).size()
    #define mp(a, b) make_pair(a, b)
    #define all(c) (c).begin(), (c).end()
    #define iter(c) __typeof((c).begin())
    #define cls(arr, val) memset(arr, val, sizeof(arr))
    #define cpresent(c, e) (find(all(c), (e)) != (c).end())
    #define rep(i, n) for(int i = 0; i < (int)n; i++)
    #define tr(c, i) for(iter(c) i = (c).begin(); i != (c).end(); ++i)
    const int N = 1100;
    const int INF = 0x3f3f3f3f;
    struct Dinic {
        struct edge { int to, cap, next, rev; }G[N << 2];
        int s, t, tot, level[N], ite[N], head[N];
        inline void init() {
            tot = 0, cls(head, -1);
        }
        inline void add_edge(int u, int v, int cap) {
            G[tot] = (edge){ v, cap, head[u], tot + 1 }; head[u] = tot++;
            G[tot] = (edge){ u,   0, head[v], tot - 1 }; head[v] = tot++;
        }
        inline void built(int n, int m) {
            int u, v, f;
            s = 1, t = n;
            while(m--) {
                scanf("%d %d %d", &u, &v, &f);
                add_edge(u, v, f);
            }
        }
        inline void bfs(int s) {
            cls(level, -1);
            queue<int> q;
            q.push(s);
            level[s] = 0;
            while(!q.empty()) {
                int u = q.front(); q.pop();
                for(int i = head[u]; ~i; i = G[i].next) {
                    edge &e = G[i];
                    if(e.cap > 0 && level[e.to] < 0) {
                        level[e.to] = level[u] + 1;
                        q.push(e.to);
                    }
                }
            }
        }
        inline int dfs(int u, int t, int f) {
            if(u == t) return f;
            for(int &i = ite[u]; ~i; i = G[i].next) {
                edge &e = G[i];
                if(e.cap > 0 && level[u] < level[e.to]) {
                    int d = dfs(e.to, t, min(e.cap, f));
                    if(d > 0) {
                        e.cap -= d;
                        G[e.rev].cap += d;
                        return d;
                    }
                }
            }
            return 0;
        }
        inline int max_flow() {
            int flow = 0;
            while(true) {
                bfs(s);
                if(level[t] < 0) break;
                int f;
                rep(i, t) ite[i] = head[i];
                while((f = dfs(s, t, INF)) > 0) {
                    flow += f;
                }
            }
            return flow;
        }
        inline void solve(int n, int m) {
            static int k = 1;
            init(), built(n, m);
            printf("Case %d: %d
    ", k++, max_flow());
        }
    }go;
    int main() {
    #ifdef LOCAL
        freopen("in.txt", "r", stdin);
        freopen("out.txt", "w+", stdout);
    #endif
        int t, n, m;
        scanf("%d", &t);
        while(t--) {
            scanf("%d %d", &n, &m);
            go.solve(n, m);
        }
        return 0;
    }
  • 相关阅读:
    [JSOI2008]最小生成树计数
    [SCOI2009]windy数
    Sql Server 存储过程
    Sql Server 表操作
    .NET WebService中使用 Session
    从头入手jenkins
    swiftlint 你所要知道的所有!!
    swiftlint swift代码规范检查神器
    使用RxSwift 实现登录页面的条件绑定
    iOS 设置不同环境下的配置 Debug Release 生产 测试 等等
  • 原文地址:https://www.cnblogs.com/GadyPu/p/4792931.html
Copyright © 2020-2023  润新知