• luogu P3357 最长k可重线段集问题


    这题和3358一模一样,建模形式直接不用变,就两点不一样,一是len变化了,加入y后再更新即可,还有就是可能会出现x0=x1的情况,即一条开线段垂直x轴,如果我们依旧按照上一题的建图方法,就会出现负权环,无法跑出答案,我们就可以把一个点拆成入点和出点,这样无论是否是不是垂直都可以一样建,注意开long long,不开long long可能只有9分

    #include<bits/stdc++.h>
    using namespace std;
    #define lowbit(x) ((x)&(-x))
    #define sqr(x) ((x)*(x))
    typedef long long LL;
    
    const int maxm = 1e5+5;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    
    struct edge{
        LL u, v, cap, flow, cost, nex;
    } edges[maxm];
    
    struct Points{
        LL l, r, len;
    } point[505];
    
    LL head[maxm], cur[maxm], cnt, fa[1024<<1], n, d[1024<<1], allx[1024];
    bool inq[1024<<1];
    
    void init() {
        memset(head, -1, sizeof(head));
    }
    
    void add(int u, int v, LL cap, LL cost) {
        edges[cnt] = edge{u, v, cap, 0, cost, head[u]};
        head[u] = cnt++;
    }
    
    void addedge(int u, int v, LL cap, LL cost) {
        add(u, v, cap, cost), add(v, u, 0, -cost);
    }
    
    bool spfa(int s, int t, int &flow, LL &cost) {
        for(int i = 0; i <= n+2; ++i) d[i] = INF; //init()
        memset(inq, false, sizeof(inq));
        d[s] = 0, inq[s] = true;
        fa[s] = -1, cur[s] = INF;
        queue<int> q;
        q.push(s);
        while(!q.empty()) {
            int u = q.front();
            q.pop();
            inq[u] = false;
            for(int i = head[u]; i != -1; i = edges[i].nex) {
                edge& now = edges[i];
                int v = now.v;
                if(now.cap > now.flow && d[v] > d[u] + now.cost) {
                    d[v] = d[u] + now.cost;
                    fa[v] = i;
                    cur[v] = min(cur[u], now.cap - now.flow);
                    if(!inq[v]) {q.push(v); inq[v] = true;}
                }
            }
        }
        if(d[t] == INF) return false;
        flow += cur[t];
        cost += 1LL*d[t]*cur[t];
        for(int u = t; u != s; u = edges[fa[u]].u) {
            edges[fa[u]].flow += cur[t];
            edges[fa[u]^1].flow -= cur[t];
        }
        return true;
    }
    
    int MincostMaxflow(int s, int t, LL &cost) {
        cost = 0;
        int flow = 0;
        while(spfa(s, t, flow, cost));
        return flow;
    }
    
    void run_case() {
        init();
        LL l, r, y1, y2;
        int k, xcnt = 0;
        cin >> n >> k;
        for(int i = 1; i <= n; ++i) {
            cin >> l >> y1 >> r >> y2;
            LL tmp = 1LL*floor(sqrt(sqr(r-l)+sqr(y2-y1)));
            if(l > r) swap(l, r);
            l <<= 1, r <<= 1;
            if(l == r) r|=1; else l|=1;
            allx[++xcnt] = l, allx[++xcnt] = r, point[i] = Points{l, r, tmp};
        }
        sort(allx+1,allx+1+xcnt);
        int len = unique(allx+1,allx+1+xcnt)-allx;
        for(int i = 1; i <= n; ++i) {
            point[i].l = lower_bound(allx+1,allx+len,point[i].l)-allx;
            point[i].r = lower_bound(allx+1,allx+len,point[i].r)-allx;
        }
        for(int i = 1; i < len-1; ++i)
            addedge(i, i+1, INF, 0);
        int s = 0, t = len;
        for(int i = 1; i <= n; ++i) {
            addedge(point[i].l, point[i].r, 1, -point[i].len);
        }
        addedge(s, 1, k, 0), addedge(len-1, t, k, 0);
        LL cost = 0;
        n = len;
        MincostMaxflow(s, t, cost);
        cout << -cost;
    }
    
    int main() {
        ios::sync_with_stdio(false), cin.tie(0);
        run_case();
        cout.flush();
        return 0;
    }
    View Code
  • 相关阅读:
    记账本开发第一天-补
    20200418-补
    20200411-补
    20200404-补
    20200328-补
    暴力解N皇后
    nN皇后递归
    Hanoi汉诺塔非递归栈解
    Hanoi汉诺塔递归
    JMMjmm模型
  • 原文地址:https://www.cnblogs.com/GRedComeT/p/12288375.html
Copyright © 2020-2023  润新知