• luogu P4015 运输问题


    经典问题,货物供需平衡,很容易想到网络流,设源点和汇点,源点对每个仓库连一条capacity为仓库容量的边,cost为0,每个商店对汇点连一条capacity为需要的量的点,cost为0,每一个仓库与商店之间连一条capacity为无限大,cost为给定的边,直接跑最小费用最大流即可,求最大费用就去反边即可

    #include<bits/stdc++.h>
    using namespace std;
    #define lowbit(x) ((x)&(-x))
    typedef long long LL;
    
    const int maxm = 3e4+5;
    const int INF = 0x3f3f3f3f;
    
    struct edge{
        int u, v, cap, flow, cost, nex;
    } edges[maxm];
    
    int head[maxm], cur[maxm], cnt, fa[maxm], d[maxm], n, m, capacity[2][105], flowcost[105][105];
    bool inq[maxm];
    
    void init() {
        memset(head, -1, sizeof(head));
    }
    
    void addedge(int u, int v, int cap, int cost) {
        edges[cnt] = edge{u, v, cap, 0, cost, head[u]};
        head[u] = cnt++;
    }
    
    bool spfa(int s, int t, int &flow, LL &cost) {
        for(int i = 0; i <= n+m+1; ++i) d[i] = INF; //init()
        memset(inq, false, sizeof(inq));
        d[s] = 0, inq[s] = true;
        fa[s] = -1, cur[s] = INF;
        queue<int> q;
        q.push(s);
        while(!q.empty()) {
            int u = q.front();
            q.pop();
            inq[u] = false;
            for(int i = head[u]; i != -1; i = edges[i].nex) {
                edge& now = edges[i];
                int v = now.v;
                if(now.cap > now.flow && d[v] > d[u] + now.cost) {
                    d[v] = d[u] + now.cost;
                    fa[v] = i;
                    cur[v] = min(cur[u], now.cap - now.flow);
                    if(!inq[v]) {q.push(v); inq[v] = true;}
                }
            }
        }
        if(d[t] == INF) return false;
        flow += cur[t];
        cost += 1LL*d[t]*cur[t];
        for(int u = t; u != s; u = edges[fa[u]].u) {
            edges[fa[u]].flow += cur[t];
            edges[fa[u]^1].flow -= cur[t];
        }
        return true;
    }
    
    int MincostMaxflow(int s, int t, LL &cost) {
        cost = 0;
        int flow = 0;
        while(spfa(s, t, flow, cost));
        return flow;
    }
    
    void build_graph(int val, int s, int t) {
        for(int i = 1; i <= m; ++i)
            addedge(s, i, capacity[0][i], 0), addedge(i, s, 0, 0);
        for(int i = 1; i <= n; ++i)
            addedge(m+i, t, capacity[1][i], 0), addedge(t, m+i, 0, 0);
        for(int i = 1; i <= m; ++i)
            for(int j = 1; j <= n; ++j) {
                addedge(i, m+j, INF, flowcost[i][j]*val), addedge(m+j, i, 0, -flowcost[i][j]*val);
            }
    }
    
    void run_case() {
        init();
        cin >> m >> n;
        int s = 0, t = m + n + 1;
        for(int i = 1; i <= m; ++i)
            cin >> capacity[0][i];
        for(int i = 1; i <= n; ++i)
            cin >> capacity[1][i];
        for(int i = 1; i <= m; ++i)
            for(int j = 1; j <= n; ++j)
                cin >> flowcost[i][j];
        build_graph(1, s, t);
        LL cost = 0;
        MincostMaxflow(s, t, cost);
        cout << cost << "
    ";
        cost = 0;
        init();
        build_graph(-1, s, t);
        MincostMaxflow(s, t, cost);
        cout << -cost;
    }
    
    int main() {
        ios::sync_with_stdio(false), cin.tie(0);
        run_case();
        //cout.flush();
        return 0;
    }
    View Code
  • 相关阅读:
    关于Dijkstra三种堆速度的研究
    [BZOJ1041][HAOI2008]圆上的整点[数论]
    [BZOJ2482][Spoj1557] Can you answer these queries II[线段树]
    [CF600E]Lomsat gelral[dsu on tree/树上启发式合并]
    [BZOJ3495]PA2010 Riddle[2-SAT]
    [9.26模拟] 伪造
    [bzoj4722] 由乃
    [bzoj2004] 公交线路
    [51nod1314] 定位系统
    [51nod1143] 路径和树
  • 原文地址:https://www.cnblogs.com/GRedComeT/p/12275113.html
Copyright © 2020-2023  润新知