• Games101--Assignment3


    Assignment3的任务要求

    1. 修改函数rasterize_triangle(const Triangle& t) in rasterizer.cpp: 在此处实现与作业2 类似的插值算法,实现法向量、颜色、纹理颜色的插值。
    2. 修改函数get_projection_matrix() in main.cpp: 将你自己在之前的实验中实现的投影矩阵填到此处,此时你可以运行./Rasterizer output.png normal来观察法向量实现结果。
    3. 修改函数phong_fragment_shader() in main.cpp: 实现Blinn-Phong 模型计算Fragment Color.
    4. 修改函数texture_fragment_shader() in main.cpp: 在实现Blinn-Phong的基础上,将纹理颜色视为公式中的kd,实现Texture Shading FragmentShader.
    5. 修改函数bump_fragment_shader() in main.cpp: 在实现Blinn-Phong 的基础上,仔细阅读该函数中的注释,实现Bump mapping.
    6. 修改函数displacement_fragment_shader() in main.cpp: 在实现Bumpmapping 的基础上,实现displacement mapping.
    

    Assignment3--FAQ

    http://games-cn.org/forums/topic/frequently-asked-questionskeep-updating/

    (1) bump mapping 部分的 h(u,v)=texture_color(u,v).norm, 其中 u,v 是 tex_coords, w,h 是 texture 的宽度与高度
    (2) rasterizer.cpp 中 v = t.toVector4()
    (3) get_projection_matrix 中的 eye_fov 应该被转化为弧度制
    (4) bump 与 displacement 中修改后的 normal 仍需要 normalize
    (5) 可能用到的 eigen 方法:norm(), normalized(), cwiseProduct()
    (6) 实现 h(u+1/w,v) 的时候要写成 h(u+1.0/w,v)
    

    步骤

    1.实现法向量、颜色、纹理颜色的插值

    首先计算三角形内某点的重心坐标((alpha),(eta),(gamma)),所用公式即为课上所提。使用重心坐标对三角形内的点((alpha,eta,gamma))进行插值,需要插值的属性也用重心坐标进行线性组合,三个顶点的属性为(V_A)(V_B)(V_C),则其属性即为(V=alpha V_A+eta V_B+gamma V_C)

    //Screen space rasterization
    void rst::rasterizer::rasterize_triangle(const Triangle& t, const std::array<Eigen::Vector3f, 3>& view_pos) 
    {
        // TODO: From your HW3, get the triangle rasterization code.
        // TODO: Inside your rasterization loop:
        //    * v[i].w() is the vertex view space depth value z.
        //    * Z is interpolated view space depth for the current pixel
        //    * zp is depth between zNear and zFar, used for z-buffer
    
        // float Z = 1.0 / (alpha / v[0].w() + beta / v[1].w() + gamma / v[2].w());
        // float zp = alpha * v[0].z() / v[0].w() + beta * v[1].z() / v[1].w() + gamma * v[2].z() / v[2].w();
        // zp *= Z;
    
        // TODO: Interpolate the attributes:
        // auto interpolated_color
        // auto interpolated_normal
        // auto interpolated_texcoords
        // auto interpolated_shadingcoords
    
        // Use: fragment_shader_payload payload( interpolated_color, interpolated_normal.normalized(), interpolated_texcoords, texture ? &*texture : nullptr);
        // Use: payload.view_pos = interpolated_shadingcoords;
        // Use: Instead of passing the triangle's color directly to the frame buffer, pass the color to the shaders first to get the final color;
        // Use: auto pixel_color = fragment_shader(payload);
        auto v = t.toVector4();
        int left=MIN(v[0].x(),MIN(v[1].x(),v[2].x()))-1;
        int right=MAX(v[0].x(),MAX(v[1].x(),v[2].x()))+1;
        int bottom=MIN(v[0].y(),MIN(v[1].y(),v[2].y()))-1;
        int top=MAX(v[0].y(),MAX(v[1].y(),v[2].y()))+1;
        //int top=MAX(v[0].y(),MIN(v[1].y(),v[2].y()))+1;//镂空效果,不一定非得是top,只要缩小了包围盒。
        for(int x=left;x<=right;x++){
            for(int y=bottom;y<=top;y++){
                if(insideTriangle(x,y,t.v)){
                    auto[alpha, beta, gamma]=computeBarycentric2D(x, y, t.v);
                    float Z = 1.0/(alpha / v[0].w() + beta / v[1].w() + gamma / v[2].w());
                    float zp= alpha * v[0].z() / v[0].w() + beta * v[1].z() / v[1].w() + gamma * v[2].z() / v[2].w();
                    zp*=Z; 
                    if(zp<depth_buf[get_index(x,y)]){
                        depth_buf[get_index(x,y)]=zp;
                        auto interpolated_color=Vector3f(alpha*t.color[0]+beta*t.color[1]+gamma*t.color[2]);
                        auto interpolated_normal=Vector3f(alpha*t.normal[0]+beta*t.normal[1]+gamma*t.normal[2]).normalized();
                        auto interpolated_texcoords=Vector2f(alpha*t.tex_coords[0]+beta*t.tex_coords[1]+gamma*t.tex_coords[2]);
                        auto interpolated_shadingcoords=Vector3f(alpha*view_pos[0]+beta*view_pos[1]+gamma*view_pos[2]);
                          
                        fragment_shader_payload payload( interpolated_color, interpolated_normal.normalized(), interpolated_texcoords, texture ? &*texture : nullptr);
                        payload.view_pos = interpolated_shadingcoords;
                        auto pixel_color = fragment_shader(payload);
                        depth_buf[get_index(x, y)] = zp;
                        set_pixel(Vector2i(x,y),pixel_color);
                    }
                }
            }   
        }
    }
    
    

    2.投影矩阵

    这里使用的还是之前Assignment2中使用的投影矩阵。

    Eigen::Matrix4f get_projection_matrix(float eye_fov, float aspect_ratio, float zNear, float zFar)
    {
        // TODO: Use the same projection matrix from the previous assignments
        Eigen::Matrix4f projection = Eigen::Matrix4f::Identity();
        float n=zNear,f=zFar;
        float t=-n*tan(eye_fov/2.0);//Use -n because the left-hand coordinate used in the framework 
        float r=t*aspect_ratio;
        float b=-t,l=-r;
        projection<<(2.0*n)/(r-l),0,(r+l)/(l-r),0,
        0,(2.0*n)/(t-b),(t+b)/(b-t),0,
        0,0,(n+f)/(n-f),(2.0*n*f)/(f-n),
        0,0,1,0;
        return projection;
    }
    

    3.normal上色实现结果

    在这里我因为找BUG还得到了另一个镂空的效果,当然这样的结果不是题目要求的,但是看着还挺有意思。原因是此时包围盒的边界计算错误(包围盒没有完全覆盖三角形),造成被三角形覆盖的像素没有被完全采样。不同的边界缩小会有些许区别。

    4.实现Blinn-Phong 模型计算Fragment Color

    所用公式如下:

    [egin{aligned} L&=L_a+L_d+L_s\ &=k_a I_a + k_d (frac{I}{r^2}) max(0,pmb{n}cdot pmb{l})+ k_s (frac{I}{r^2})max(0,pmb{n}cdot pmb{h})^p end{aligned} ]

    需要注意的是Eigen中的矩阵系数乘积计算可以使用cwiseProduct。

    Eigen::Vector3f phong_fragment_shader(const fragment_shader_payload& payload)
    {
        Eigen::Vector3f ka = Eigen::Vector3f(0.005, 0.005, 0.005);
        Eigen::Vector3f kd = payload.color;
        Eigen::Vector3f ks = Eigen::Vector3f(0.7937, 0.7937, 0.7937);
    
        auto l1 = light{{20, 20, 20}, {500, 500, 500}};
        auto l2 = light{{-20, 20, 0}, {500, 500, 500}};
        /*
        struct light
        {
            Eigen::Vector3f position;
            Eigen::Vector3f intensity;
        };
        */
        std::vector<light> lights = {l1, l2};
        Eigen::Vector3f amb_light_intensity{10, 10, 10};
        Eigen::Vector3f eye_pos{0, 0, 10};
    
        float p = 150;
    
        Eigen::Vector3f color = payload.color;
        Eigen::Vector3f point = payload.view_pos;
        Eigen::Vector3f normal = payload.normal;
    
        Eigen::Vector3f result_color = {0, 0, 0};
    
        auto n=normal.normalized();
        
        for (auto& light : lights)
        {
            // TODO: For each light source in the code, calculate what the *ambient*, *diffuse*, and *specular* 
            // components are. Then, accumulate that result on the *result_color* object.
            auto l=(light.position-point).normalized();
            auto v=(eye_pos-point).normalized();
            auto r=light.position-point;
            auto h=(v+l).normalized();
            auto La=ka.cwiseProduct(amb_light_intensity);  
            auto Ld=kd.cwiseProduct(light.intensity/(r.dot(r)))*MAX(0.0,n.dot(l));
            auto Ls=ks.cwiseProduct(light.intensity/(r.dot(r)))*pow((MAX(0.0,n.dot(h))),p);
            result_color+=La+Ld+Ls;
        }
        return result_color * 255.f;
    }
    

    结果如下:

    5.实现Texture Shading Fragment Shader

    公式还是Blinn-Phong模型的公式,但是此时将纹理颜色视为公式中的(k_d)

    Eigen::Vector3f texture_fragment_shader(const fragment_shader_payload& payload)
    {
        Eigen::Vector3f return_color = {0, 0, 0};
        if (payload.texture)
        {
            // TODO: Get the texture value at the texture coordinates of the current fragment
            return_color=payload.texture->getColor(payload.tex_coords.x(),payload.tex_coords.y());
        }
        Eigen::Vector3f texture_color;q
        texture_color << return_color.x(), return_color.y(), return_color.z();
    
        Eigen::Vector3f ka = Eigen::Vector3f(0.005, 0.005, 0.005);
        Eigen::Vector3f kd = texture_color / 255.f;
        Eigen::Vector3f ks = Eigen::Vector3f(0.7937, 0.7937, 0.7937);
    
        auto l1 = light{{20, 20, 20}, {500, 500, 500}};
        auto l2 = light{{-20, 20, 0}, {500, 500, 500}};
    
        std::vector<light> lights = {l1, l2};
        Eigen::Vector3f amb_light_intensity{10, 10, 10};
        Eigen::Vector3f eye_pos{0, 0, 10};
    
        float p = 150;
    
        Eigen::Vector3f color = texture_color;
        Eigen::Vector3f point = payload.view_pos;
        Eigen::Vector3f normal = payload.normal;
    
        Eigen::Vector3f result_color = {0, 0, 0};
    
        auto n=normal.normalized();
        for (auto& light : lights)
        {
            // TODO: For each light source in the code, calculate what the *ambient*, *diffuse*, and *specular* 
            // components are. Then, accumulate that result on the *result_color* object.
            auto l=(light.position-point).normalized();
            auto v=(eye_pos-point).normalized();
            auto r=light.position-point;
            auto h=(v+l).normalized();
            auto I=light.intensity;
            auto La=ka.cwiseProduct(amb_light_intensity); 
            auto Ld=kd.cwiseProduct(I/(r.dot(r)))*MAX(0.0,n.dot(l));
            auto Ls=ks.cwiseProduct(I/(r.dot(r)))*pow((MAX(0.0,n.dot(h))),p);
            result_color+=La+Ld+Ls;
        }
        return result_color * 255.f;
    }
    

    结果如下:

    6.实现Bump mapping

    注意 bump mapping 部分的 (h(u,v)=texture\_color(u,v).norm), 其中 (u),(v)(tex\_coords)(w),(h)(texture) 的宽度与高度,最后法线要归一化,其余按照注释实现即可。

    Eigen::Vector3f bump_fragment_shader(const fragment_shader_payload& payload)
    {
        
        Eigen::Vector3f ka = Eigen::Vector3f(0.005, 0.005, 0.005);
        Eigen::Vector3f kd = payload.color;
        Eigen::Vector3f ks = Eigen::Vector3f(0.7937, 0.7937, 0.7937);
    
        auto l1 = light{{20, 20, 20}, {500, 500, 500}};
        auto l2 = light{{-20, 20, 0}, {500, 500, 500}};
    
        std::vector<light> lights = {l1, l2};
        Eigen::Vector3f amb_light_intensity{10, 10, 10};
        Eigen::Vector3f eye_pos{0, 0, 10};
    
        float p = 150;
    
        Eigen::Vector3f color = payload.color; 
        Eigen::Vector3f point = payload.view_pos;
        Eigen::Vector3f normal = payload.normal;
    
        float kh = 0.2, kn = 0.1;
    
        // TODO: Implement bump mapping here
        // Let n = normal = (x, y, z)
        // Vector t = (x*y/sqrt(x*x+z*z),sqrt(x*x+z*z),z*y/sqrt(x*x+z*z))
        // Vector b = n cross product t
        // Matrix TBN = [t b n]
        // dU = kh * kn * (h(u+1/w,v)-h(u,v))
        // dV = kh * kn * (h(u,v+1/h)-h(u,v))
        // Vector ln = (-dU, -dV, 1)
        // Normal n = normalize(TBN * ln)
        auto n=normal.normalized();
        auto x=n.x(),y=n.y(),z=n.z();
        auto t=Vector3f(x*y/sqrt(x*x+z*z),sqrt(x*x+z*z),z*y/sqrt(x*x+z*z));
        auto b=n.cross(t);
        Matrix3f TBN;
        TBN<<
        t.x(),b.x(),n.x(),
        t.y(),b.y(),n.y(),
        t.z(),b.z(),n.z();
    
        auto u=payload.tex_coords.x(),v=payload.tex_coords.y();
        auto h=payload.texture->height,w=payload.texture->width;
        auto dU = kh * kn * (payload.texture->getColor(u+1.0/w,v).norm()-payload.texture->getColor(u,v).norm());
        auto dV = kh * kn * (payload.texture->getColor(u,v+1.0/h).norm()-payload.texture->getColor(u,v).norm());
    
        auto ln=Vector3f(-dU,-dV,1.0);
        normal=(TBN*ln).normalized();
        Eigen::Vector3f result_color = {0, 0, 0};
        result_color = normal;
    
        return result_color * 255.f;
    }
    

    结果如下:

    7.实现displacement mapping

    和Bump mapping相比较,displacement mapping对实际点进行了更新。

    Eigen::Vector3f displacement_fragment_shader(const fragment_shader_payload& payload)
    {
        
        Eigen::Vector3f ka = Eigen::Vector3f(0.005, 0.005, 0.005);
        Eigen::Vector3f kd = payload.color;
        Eigen::Vector3f ks = Eigen::Vector3f(0.7937, 0.7937, 0.7937);
    
        auto l1 = light{{20, 20, 20}, {500, 500, 500}};
        auto l2 = light{{-20, 20, 0}, {500, 500, 500}};
    
        std::vector<light> lights = {l1, l2};
        Eigen::Vector3f amb_light_intensity{10, 10, 10};
        Eigen::Vector3f eye_pos{0, 0, 10};
    
        float p = 150;
    
        Eigen::Vector3f color = payload.color; 
        Eigen::Vector3f point = payload.view_pos;
        Eigen::Vector3f normal = payload.normal;
    
        float kh = 0.2, kn = 0.1; 
        // TODO: Implement displacement mapping here
        // Let n = normal = (x, y, z)
        // Vector t = (x*y/sqrt(x*x+z*z),sqrt(x*x+z*z),z*y/sqrt(x*x+z*z))
        // Vector b = n cross product t
        // Matrix TBN = [t b n]
        // dU = kh * kn * (h(u+1/w,v)-h(u,v))
        // dV = kh * kn * (h(u,v+1/h)-h(u,v))
        // Vector ln = (-dU, -dV, 1)
        // Position p = p + kn * n * h(u,v)
        // Normal n = normalize(TBN * ln)
        auto n=normal.normalized();
        auto x=n.x(),y=n.y(),z=n.z();
        auto t=Vector3f(x*y/sqrt(x*x+z*z),sqrt(x*x+z*z),z*y/sqrt(x*x+z*z));
        auto b=n.cross(t);
        Matrix3f TBN;
        TBN<<
        t.x(),b.x(),n.x(),
        t.y(),b.y(),n.y(),
        t.z(),b.z(),n.z();
    
        auto u=payload.tex_coords.x(),v=payload.tex_coords.y();
        auto h=payload.texture->height,w=payload.texture->width;
        auto dU=kh * kn * (payload.texture->getColor(u+1.0/w,v).norm()-payload.texture->getColor(u,v).norm());
        auto dV = kh * kn * (payload.texture->getColor(u,v+1.0/h).norm()-payload.texture->getColor(u,v).norm());
        auto ln=Vector3f(-dU,-dV,1.0);
        normal=(TBN*ln).normalized();
        point+=kn*n*(payload.texture->getColor(u,v).norm());
    
        Eigen::Vector3f result_color = {0, 0, 0};
    
        n=normal;
        
        for (auto& light : lights)
        {
            // TODO: For each light source in the code, calculate what the *ambient*, *diffuse*, and *specular* 
            // components are. Then, accumulate that result on the *result_color* object.
            auto l=(light.position-point).normalized();
            auto v=(eye_pos-point).normalized();
            auto r=light.position-point;
            auto h=(v+l).normalized();
            auto I=light.intensity;
            auto La=ka.cwiseProduct(amb_light_intensity);  
            auto Ld=kd.cwiseProduct(I/(r.dot(r)))*MAX(0.0,n.dot(l));
            auto Ls=ks.cwiseProduct(I/(r.dot(r)))*pow((MAX(0.0,n.dot(h))),p);
            result_color+=La+Ld+Ls;
        }
        return result_color * 255.f;
    }
    

    结果如下:

  • 相关阅读:
    关于Python安装PIL库失败的原因
    SSH免密登录及配置完成后仍需要输入密码的解决办法
    Github+Hexo博客搭建教程(三)
    Github+Hexo博客搭建教程(二)
    Github+Hexo博客搭建教程(一)
    winform中控件的简单数据绑定
    分享一个跨线程访问控件的很实用的方法
    自定义两个控件,一个是显示图标和文字的矩形,一个是带边框的label(但是不是label)
    写一个给字符串根据长度添加换行符的处理方法
    Winform DataGridView控件在业务逻辑上的简单使用
  • 原文地址:https://www.cnblogs.com/FlyerBird/p/13289937.html
Copyright © 2020-2023  润新知