• How many Knight Placing? UVA


    Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu

    []   [Go Back]   [Status]  

    Description

     

    0 6

    Problem H: How many Knight Placing?

    Input: standard input

    Output: standard output

     

    You are given a 6*n chessboard. Yes it is not a regular chessboard. The number of columns in this chessboard is variable. In each of the columns you have to place exactly 2 knights. So you have to place total 2*n knights. You have to count the number of valid placing of these 2*n knight. A placing is invalid if any of the 2 knights attack each other. Those who are not familiar with knight moves “A knight in cell(x,y) attacks the knights in the cell(x±2,y±1) and cell(x±1,y±2)”.

    Input

    The first line of the input contains a single integer T indicating the number of test cases.  Each test case contains a single integer n.

    Output

    For each test case output an integer the number of valid placing. The integer may be very large. So just output the result%10007.

    Constraints

    -           T ≤ 15
    -           1 ≤ n < 1000000000

    Sample Input

    Output for Sample Input

    4
    1
    10
    100
    1000

    15
    178
    30
    8141

    好恶心的矩阵构造啊!

      1 #include <iostream>
      2 #include <stdio.h>
      3 #include <string.h>
      4 using namespace std;
      5 #define mod 10007
      6 typedef struct point
      7 {
      8     int x,y;
      9 } point;
     10 typedef struct mar
     11 {
     12     int a[70][70];
     13 } mar;
     14 mar ri,anss,riri;
     15 point p[70];
     16 int a[20];
     17 int check(int t)
     18 {
     19     int sum=0;
     20     while(t)
     21     {
     22         if(t&1)sum++;
     23         t>>=1;
     24     }
     25     return sum==2;
     26 }
     27 bool fun(int x,int y)
     28 {
     29     if((x<<2)&y||(y<<2)&x)return 0;
     30     return 1;
     31 }
     32 bool fun1(int x,int y,int z)
     33 {
     34     if(!fun(x,y)||!fun(y,z))return 0;
     35     if((x<<1)&z||(z<<1)&x)return 0;
     36     return 1;
     37 }
     38 mar mul(mar x,mar y)
     39 {
     40     mar z;
     41     memset(z.a,0,sizeof(z.a));
     42     int i,j,k;
     43     for(k=0; k<69; k++)
     44         for(i=0; i<69; i++)
     45             if(x.a[i][k])
     46                 for(j=0; j<69; j++)
     47                     z.a[i][j]+=x.a[i][k]*y.a[k][j]%mod,z.a[i][j]%=mod;
     48     return z;
     49 }
     50 void init()
     51 {
     52     int tt=(1<<6)-1,nu=0,i,j;
     53     while(tt)
     54     {
     55         if(check(tt))
     56             a[nu++]=tt;
     57         tt--;
     58     }
     59     nu=0;
     60     for(i=0; i<15; i++)
     61         for(j=0; j<15; j++)
     62             if(fun(a[i],a[j]))
     63                 p[nu].x=a[i],p[nu++].y=a[j];
     64     memset(ri.a,0,sizeof(ri.a));
     65     for(i=0; i<69; i++)
     66     {
     67         for(j=0; j<69; j++)
     68         {
     69             if(p[i].y==p[j].x)
     70             {
     71                 if(fun1(p[i].x,p[i].y,p[j].y))
     72                     ri.a[i][j]=1;
     73             }
     74         }
     75     }
     76 }
     77 int solve(int m)
     78 {
     79     int i,j,ans=0;
     80     memset(anss.a,0,sizeof(anss.a));
     81      memset(riri.a,0,sizeof(riri.a));
     82     for(i=0; i<69; i++)anss.a[i][i]=1;
     83     for(i=0; i<69; i++)
     84         for(j=0; j<69; j++)riri.a[i][j]=ri.a[i][j];
     85     m-=2;
     86     while(m)
     87     {
     88         if(m&1)
     89             anss=mul(anss,riri);
     90         riri=mul(riri,riri);
     91         m>>=1;
     92     }
     93     for(i=0; i<69; i++)
     94         for(j=0; j<69; j++)ans+=anss.a[i][j],ans%=mod;
     95     return ans;
     96 }
     97 int main()
     98 {
     99     init();
    100     int t,m;
    101     scanf("%d",&t);
    102     while(t--)
    103     {
    104         scanf("%d",&m);
    105         if(m==1)
    106         {
    107             printf("15
    ");
    108             continue;
    109         }
    110         else if(m==2)
    111         {
    112             printf("69
    ");
    113             continue;
    114         }
    115         printf("%d
    ",solve(m));
    116     }
    117 }
    View Code
  • 相关阅读:
    前端 CSS
    前端 HTML
    前端 JavaScript 初识
    网络编程——线程池
    网络编程——同一进程中的队列(多线程)
    网络编程——进程间的共享内存
    vue实现前端简易版模糊查询
    封装axios请求拦截器
    关于node中 mysql Client does not support authentication protocol requested by server; consider upgrading MySQL client 解决方法
    封装一个时间方法
  • 原文地址:https://www.cnblogs.com/ERKE/p/3674590.html
Copyright © 2020-2023  润新知