• Uva 12304


    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3726

    题意:

    新白书p267,  有说

    给出三角形三点求外接圆,内接圆,给出一点求以及圆求过该点的切线, 给出一直线和一个点求过该点与直线想切的圆,圆半径给出。给出两条相交的直线求与这两条直线想切的圆, 给出两个相离的圆,求与这两个圆都想切的圆

    思路:

      其实没什么很难的就是模板运用,还要注意细节什么的,这题考了很多二维几何的模板,值得一做,话说这是做ACM 题目以来写的最长的题目。细心。。

    #include <iostream>
    #include <cstdio>
    #include <cmath>
    #include <vector>
    #include <cstring>
    #include <algorithm>
    #include <string>
    #include <set>
    #include <functional>
    #include <numeric>
    #include <sstream>
    #include <stack>
    #include <map>
    #include <queue>
    
    #define CL(arr, val) memset(arr, val, sizeof(arr))
    
    #define lc l,m,rt<<1
    #define rc m + 1,r,rt<<1|1
    #define PI acos(-1.0)
    #define L(x)    (x) << 1
    #define R(x)    (x) << 1 | 1
    #define MID(l, r)   (l + r) >> 1
    #define Min(x, y)   (x) < (y) ? (x) : (y)
    #define Max(x, y)   (x) < (y) ? (y) : (x)
    #define E(x)        (1 << (x))
    #define iabs(x)     (x) < 0 ? -(x) : (x)
    #define OUT(x)  printf("%I64d
    ", x)
    #define lowbit(x)   (x)&(-x)
    #define Read()  freopen("data.in", "r", stdin)
    #define Write() freopen("d.out", "w", stdout)
    #define ll unsigned long long
    
    
    #define M 100007
    #define N 65736
    
    using namespace std;
    
    const int inf = 0x7f7f7f7f;
    const int mod = 1000000007;
    const double eps = 1e-6;
    
    
    struct Point
    {
        double x,y;
        Point(double tx = 0,double ty = 0) : x(tx),y(ty){}
    };
    typedef Point Vtor;
    //向量的加减乘除
    Vtor operator + (Vtor A,Vtor B) { return Vtor(A.x + B.x,A.y + B.y); }
    Vtor operator - (Point A,Point B) { return Vtor(A.x - B.x,A.y - B.y); }
    Vtor operator * (Vtor A,double p) { return Vtor(A.x*p,A.y*p); }
    Vtor operator / (Vtor A,double p) { return Vtor(A.x/p,A.y/p); }
    bool operator < (Point A,Point B) { return A.x < B.x || (A.x == B.x && A.y < B.y);}
    int dcmp(double x){ if (fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; }
    bool operator == (Point A,Point B) {return dcmp(A.x - B.x) == 0 && dcmp(A.y - B.y) == 0; }
    //向量的点积,长度,夹角
    double Dot(Vtor A,Vtor B) { return (A.x*B.x + A.y*B.y); }
    double Length(Vtor A) { return sqrt(Dot(A,A)); }
    double Angle(Vtor A,Vtor B) { return acos(Dot(A,B)/Length(A)/Length(B)); }
    //叉积,三角形面积
    double Cross(Vtor A,Vtor B) { return A.x*B.y - A.y*B.x; }
    double Area2(Point A,Point B,Point C) { return Cross(B - A,C - A); }
    //向量的旋转,求向量的单位法线(即左转90度,然后长度归一)
    Vtor Rotate(Vtor A,double rad){ return Vtor(A.x*cos(rad) - A.y*sin(rad),A.x*sin(rad) + A.y*cos(rad)); }
    Vtor Normal(Vtor A)
    {
        double L = Length(A);
        return Vtor(-A.y/L, A.x/L);
    }
    //直线的交点
    Point GetLineIntersection(Point P,Vtor v,Point Q,Vtor w)
    {
        Vtor u = P - Q;
        double t = Cross(w,u)/Cross(v,w);
        return P + v*t;
    }
    //点到直线的距离
    double DistanceToLine(Point P,Point A,Point B)
    {
        Vtor v1 = B - A;
        return fabs(Cross(P - A,v1))/Length(v1);
    }
    //点到线段的距离
    double DistanceToSegment(Point P,Point A,Point B)
    {
        if (A == B) return Length(P - A);
        Vtor v1 =  B - A , v2 = P - A, v3 = P - B;
        if (dcmp(Dot(v1,v2)) < 0) return Length(v2);
        else if (dcmp(Dot(v1,v3)) > 0) return Length(v3);
        else return fabs(Cross(v1,v2))/Length(v1);
    }
    //点到直线的映射
    Point GetLineProjection(Point P,Point A,Point B)
    {
        Vtor v = B - A;
        return A + v*Dot(v,P - A)/Dot(v,v);
    }
    
    //判断线段是否规范相交
    bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)
    {
        double c1 = Cross(a2 - a1,b1 - a1), c2 = Cross(a2 - a1,b2 - a1),
               c3 = Cross(b2 - b1,a1 - b1), c4 = Cross(b2 - b1,a2 - b1);
        return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3)*dcmp(c4) < 0;
    }
    //判断点是否在一条线段上
    bool OnSegment(Point P,Point a1,Point a2)
    {
        return dcmp(Cross(a1 - P,a2 - P)) == 0 && dcmp(Dot(a1 - P,a2 - P)) < 0;
    }
    //多边形面积
    double PolgonArea(Point *p,int n)
    {
        double area = 0;
        for (int i = 1; i < n - 1; ++i)
        area += Cross(p[i] - p[0],p[i + 1] - p[0]);
        return area/2;
    }
    
    struct Line
    {
        Point p,b;
        Vtor v;
        Line(){}
        Line(Point a,Point b,Vtor v) : p(a),b(b),v(v) {}
        Line(Point p,Vtor v) : p(p),v(v){}
        Point point(double t) { return p + v*t; }
    };
    struct Circle
    {
        Point c;
        double r;
        Circle(Point tc,double tr) : c(tc),r(tr){}
        Point point(double a)
        {
            return Point(c.x + cos(a)*r,c.y + sin(a)*r);
        }
    };
    //判断圆与直线是否相交以及求出交点
    int getLineCircleIntersection(Line L,Circle C,double &t1,double &t2,vector<Point> &sol)
    {
    //    printf(">>>>>>>>>>>>>>>>>>>>>>>>
    ");
        //注意sol没有清空哦
        double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y;
        double e = a*a + c*c , f = 2*(a*b + c*d),  g = b*b + d*d - C.r*C.r;
        double delta = f*f - 4.0*e*g;
        if (dcmp(delta) < 0) return 0;
        else if (dcmp(delta) == 0)
        {
            t1 = t2 = -f/(2.0*e);
            sol.push_back(L.point(t1));
            return 1;
        }
        t1 = (-f - sqrt(delta))/(2.0 * e); sol.push_back(L.point(t1));
        t2 = (-f + sqrt(delta))/(2.0 * e); sol.push_back(L.point(t2));
        return 2;
    }
    //判断并求出两圆的交点
    double angle(Vtor v) { return atan2(v.y, v.x); }
    int getCircleIntersection(Circle C1,Circle C2,vector<Point> &sol)
    {
        double d = Length(C1.c - C2.c);
        // 圆心重合
        if (dcmp(d) == 0)
        {
            if (dcmp(C1.r - C2.r) == 0) return -1; // 两圆重合
            return 0; // 包含
        }
    
        // 圆心不重合
        if (dcmp(C1.r + C2.r - d) < 0) return 0; // 相离
        if (dcmp(fabs(C1.r - C2.r) - d) > 0) return 0; // 包含
    
        double a = angle(C2.c - C1.c);
        double da = acos((C1.r*C1.r + d*d - C2.r*C2.r) / (2*C1.r*d));
        Point p1 = C1.point(a - da), p2 = C1.point(a + da);
        sol.push_back(p1);
        if (p1 == p2) return 1;
        sol.push_back(p2);
        return 2;
    }
    //求点到圆的切线
    int getTangents(Point p,Circle C,Vtor* v)
    {
        Vtor u = C.c - p;
        double dis = Length(u);
        if (dis < C.r)  return 0;
        else if (dcmp(dis - C.r) == 0)
        {
            v[0] = Rotate(u,PI/2.0);
            return 1;
        }
        else
        {
            double ang = asin(C.r / dis);
            v[0] = Rotate(u, -ang);
            v[1] = Rotate(u, +ang);
            return 2;
        }
    }
    //求两圆的切线
    int getCircleTangents(Circle A,Circle B,Point *a,Point *b)
    {
        int cnt = 0;
        if (A.r < B.r) { swap(A,B); swap(a, b) ; }
        //圆心距的平方
        double d2 = (A.c.x - B.c.x)*(A.c.x - B.c.x) + (A.c.y - B.c.y)*(A.c.y - B.c.y);
        double rdiff = A.r - B.r;
        double rsum = A.r + B.r;
        double base = angle(B.c - A.c);
        //重合有无限多条
        if (d2 == 0 && dcmp(A.r - B.r) == 0) return -1;
        //内切
        if (dcmp(d2 - rdiff*rdiff) == 0)
        {
            a[cnt] = A.point(base);
            b[cnt] = B.point(base); cnt++;
            return 1;
        }
        //有外公切线
        double ang = acos((A.r - B.r) / sqrt(d2));
        a[cnt] = A.point(base + ang); b[cnt] = B.point(base + ang); cnt++;
        a[cnt] = A.point(base - ang); b[cnt] = B.point(base - ang); cnt++;
    
        //一条内切线
        if (dcmp(d2 - rsum*rsum) == 0)
        {
            a[cnt] = A.point(base); b[cnt] = B.point(PI + base); cnt++;
        }//两条内切线
        else if (dcmp(d2 - rsum*rsum) > 0)
        {
            double ang = acos((A.r + B.r) / sqrt(d2));
            a[cnt] = A.point(base + ang); b[cnt] = B.point(base + ang); cnt++;
            a[cnt] = A.point(base - ang); b[cnt] = B.point(base - ang); cnt++;
        }
        return cnt;
    }
    
    
    //**********************************
    Circle CircumscribedCircle(Point A,Point B,Point C)
    {
        Point tmp1 = Point((B.x + C.x) / 2.0,(B.y + C.y) / 2.0);
        Vtor u = C - tmp1;
        u = Rotate(u,PI/2.0);
        Point tmp2 = Point((A.x + C.x) / 2.0,(A.y + C.y) / 2.0);
        Vtor v = C - tmp2;
        v = Rotate(v,-PI/2.0);
        Point c = GetLineIntersection(tmp1,u,tmp2,v);
        double r = Length(C - c);
        return Circle(c,r);
    }
    //得到法向量就得到了这个方向上的向量了
    //Circle work1(Point p1, Point p2, Point p3)
    // {
    //     Vtor nor1 = Normal(p1 - p2);
    //     Vtor nor2 = Normal(p2 - p3);
    //     Point mid1 = (p1 + p2) / 2.0;
    //     Point mid2 = (p2 + p3) / 2.0;
    //     Point O = GetLineIntersection(mid1, nor1, mid2, nor2);
    //     double r = Length(O - p1);
    //     return Circle(O, r);
    //}
    
    //不知道为什么我按常规的求法就是不对
    //Circle InscribedCircle(Point A,Point B,Point C)
    //{
    //    Vtor u = A - B;
    //    Vtor v = C - B;
    //    double ang = Angle(u,v);
    //    Vtor vv= Rotate(v,ang / 2.0);
    //    u = A - C;
    //    v = B - C;
    //    ang = Angle(u,v);
    //    Vtor uu = Rotate(u,ang / 2.0);
    //    Point c = GetLineIntersection(B,vv,C,uu);
    //    double r = DistanceToLine(c,A,C);
    //    return Circle(c,r);
    //}
    Circle work2(Point p1, Point p2, Point p3) {
        Vtor v11 = p2 - p1;
        Vtor v12 = p3 - p1;
        Vtor v21 = p1 - p2;
        Vtor v22 = p3 - p2;
        double ang1 = (angle(v11) + angle(v12)) / 2.0;
        double ang2 = (angle(v21) + angle(v22)) / 2.0;
        Vtor vec1 = Vtor(cos(ang1), sin(ang1));
        Vtor vec2 = Vtor(cos(ang2), sin(ang2));
        Point O = GetLineIntersection(p1, vec1, p2, vec2);
        double r = DistanceToLine(O, p1, p2);
        return Circle(O, r);
    }
    vector<Point> solve4(Point A,Point B,double r,Point C)
    {
        Vtor normal = Normal(B - A);
        normal = normal / Length(normal) * r;
        vector<Point> ans;
        double t1 = 0,t2 = 0;
        Vtor tA = A + normal,tB = B + normal;
        getLineCircleIntersection(Line(tA,tB,tB - tA),Circle(C, r),t1,t2,ans);
        tA = A - normal,tB = B - normal;
        getLineCircleIntersection(Line(tA,tB,tB - tA),Circle(C, r),t1,t2,ans);
        return ans;
    }
    vector<Point> solve5(Point A,Point B,Point C,Point D,double r)
    {
        Line lines[5];
        Vtor normal = Normal(B - A) * r;
        Point ta,tb,tc,td;
        ta = A + normal,tb = B + normal;
        lines[0] = Line(ta,tb,tb - ta);
        ta = A - normal,tb = B - normal;
        lines[1] = Line(ta,tb,tb - ta);
    
        normal = Normal(D - C) * r;
        tc = C + normal,td = D + normal;
        lines[2] = Line(tc,td,td - tc);
        tc = C - normal,td = D - normal;
        lines[3] = Line(tc,td,td - tc);
        vector<Point> ans;
        ans.push_back(GetLineIntersection(lines[0].p,lines[0].v,lines[2].p,lines[2].v));
        ans.push_back(GetLineIntersection(lines[0].p,lines[0].v,lines[3].p,lines[3].v));
        ans.push_back(GetLineIntersection(lines[1].p,lines[1].v,lines[2].p,lines[2].v));
        ans.push_back(GetLineIntersection(lines[1].p,lines[1].v,lines[3].p,lines[3].v));
        return ans;
    }
    vector<Point> solve6(Circle C1,Circle C2,double r)
    {
        vector<Point> vc;
        getCircleIntersection(Circle(C1.c, C1.r + r),Circle(C2.c, C2.r + r),vc);
        return vc;
    }
    
    string op;
    double x[10];
    
    int main()
    {
    //    Read();
    
        while (cin>>op)
        {
            if (op == "CircumscribedCircle")
            {
                for (int i = 0; i < 6; ++i) cin>>x[i];
                Circle ans = CircumscribedCircle(Point(x[0],x[1]),Point(x[2],x[3]),Point(x[4],x[5]));
    //            Circle ans = work1(Point(x[0],x[1]),Point(x[2],x[3]),Point(x[4],x[5]));
                printf("(%.6lf,%.6lf,%.6lf)
    ",ans.c.x,ans.c.y,ans.r);
            }
            else if (op == "InscribedCircle")
            {
                for (int i = 0; i < 6; ++i) cin>>x[i];
    //            Circle ans = InscribedCircle(Point(x[0],x[1]),Point(x[2],x[3]),Point(x[4],x[5]));
                Circle ans = work2(Point(x[0],x[1]),Point(x[2],x[3]),Point(x[4],x[5]));
                printf("(%.6lf,%.6lf,%.6lf)
    ",ans.c.x,ans.c.y,ans.r);
            }
            else if (op == "TangentLineThroughPoint")
            {
                for (int i = 0; i < 5; ++i) cin>>x[i];
                Vtor vc[5];
                int len = getTangents(Point(x[3],x[4]),Circle( Point(x[0],x[1]), x[2] ),vc);
                double tmp[5];
                for (int i = 0; i < len; ++i)
                {
                    double ang = angle(vc[i]);
                    if (ang < 0) ang += PI;
                    ang = fmod(ang,PI);
                    tmp[i] = ang*180/PI;
                }
                sort(tmp,tmp + len);
                printf("[");
                for (int i = 0; i < len; ++i)
                {
                    printf("%.6lf",tmp[i]);
                    if (i != len - 1) printf(",");
                }
                printf("]
    ");
            }
            else if (op == "CircleThroughAPointAndTangentToALineWithRadius")
            {
                for (int i = 0; i < 7; ++i) cin>>x[i];
                vector<Point> vc = solve4(Point(x[2],x[3]),Point(x[4],x[5]),x[6],Point(x[0],x[1]));
                sort(vc.begin(),vc.end());
                printf("[");
                for (size_t i = 0; i < vc.size(); ++i)
                {
                    printf("(%.6lf,%.6lf)",vc[i].x,vc[i].y);
                    if (i != vc.size() - 1) printf(",");
                }
                printf("]
    ");
            }
            else if (op == "CircleTangentToTwoLinesWithRadius")
            {
                for (int i = 0; i < 9; ++i) cin>>x[i];
                vector<Point> vc = solve5(Point(x[0],x[1]),Point(x[2],x[3]),Point(x[4],x[5]),Point(x[6],x[7]),x[8]);
                sort(vc.begin(),vc.end());
                printf("[");
                for (size_t i = 0; i < vc.size(); ++i)
                {
                    printf("(%.6lf,%.6lf)",vc[i].x,vc[i].y);
                    if (i != vc.size() - 1) printf(",");
                }
                printf("]
    ");
            }
            else
            {
                for (int i = 0; i < 7; ++i) cin>>x[i];
                vector<Point> vc = solve6(Circle(Point(x[0],x[1]),x[2]),Circle(Point(x[3],x[4]),x[5]),x[6]);
                sort(vc.begin(),vc.end());
                printf("[");
                for (size_t i = 0; i < vc.size(); ++i)
                {
                    printf("(%.6lf,%.6lf)",vc[i].x,vc[i].y);
                    if (i != vc.size() - 1) printf(",");
                }
                printf("]
    ");
            }
        }
        return 0;
    }
    

      

  • 相关阅读:
    Android学习小Demo一个显示行线的自定义EditText
    Android中自定义checkbox样式
    android圆角View实现及不同版本这间的兼容
    android下大文件分割上传
    drwtsn32.exe 遇到问题须要关闭。我们对此引起的不便表示抱歉
    【分享】深入浅出WPF全系列教程及源码
    iOS国际化时遇到的错误:read failed: the data couldn&#39;t be read because it isn&#39;t in the correct format.
    void及void指针含义的深刻解析
    堆和栈的差别(转过无数次的文章)
    sizeof,终极无惑(上)
  • 原文地址:https://www.cnblogs.com/E-star/p/3223585.html
Copyright © 2020-2023  润新知