原题链接在这里:https://leetcode.com/problems/longest-palindromic-substring/
题目:
Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.
Example:
Input: "babad" Output: "bab" Note: "aba" is also a valid answer.
Example:
Input: "cbbd" Output: "bb"
题解:
以字符串的每一个char 为中心开始向左右延展,直到不是回文为止,若新的substring 比原来的res长,就更新res.
Note: 子字符串的中心可以是一个字符,整个字符串有奇数个字符;也可以是两个字符中间的空隙,整个字符串有偶数个字符。
Note: longest辅助函数在左右延展时,跳出while loop时,i 和 j 指向的要么是out of index bound, 要么指向的字符已经不想等了。所以最后返回的最常字符串应该是substring(i+1,j)这一段, j 指向的 字符并没有包括在最后结果中。
Time Complexity: O(n^2). n = s.length(). Space: O(n), res的长度。
AC Java:
1 public class Solution { 2 public String longestPalindrome(String s) { 3 if(s == null || s.length() == 0){ 4 return s; 5 } 6 String res = ""; 7 for(int i = 0; i<s.length(); i++){ 8 //string with odd # of characters 9 String longestOddSubstring = findLongest(s, i, i); 10 if(longestOddSubstring.length() > res.length()){ 11 res = longestOddSubstring; 12 } 13 //string with even # of characters 14 String longestEvenSubstring = findLongest(s, i, i+1); 15 if(longestEvenSubstring.length() > res.length()){ 16 res = longestEvenSubstring; 17 } 18 } 19 return res; 20 } 21 22 //find the longest palindromic substring 23 private String findLongest(String s, int i, int j){ 24 while(i>=0 && j<s.length() && s.charAt(i) == s.charAt(j)){ 25 i--; 26 j++; 27 } 28 return s.substring(i+1,j); 29 } 30 }
可以用index取得结果来节省空间. 当前index 为i向两边延展后取得的最长palindrome substring的长度len.
最长palindrome substring的左侧index就是i-(len-1)/2, 右侧index就是i+len/2.
Time Complexity: O(n^2). n = s.length().
Space: O(1).
AC Java:
1 class Solution { 2 public String longestPalindrome(String s) { 3 if(s == null || s.length() == 0){ 4 return s; 5 } 6 7 int l = 0; 8 int r = 0; 9 for(int i = 0; i<s.length(); i++){ 10 int longestOddSubstringLen = findLongest(s, i, i); 11 int longestEvenSubstringLen = findLongest(s, i, i+1); 12 int longestSubstringLen = Math.max(longestOddSubstringLen, longestEvenSubstringLen); 13 if(longestSubstringLen > r-l+1){ 14 l = i-(longestSubstringLen-1)/2; 15 r = i+longestSubstringLen/2; 16 } 17 } 18 return s.substring(l, r+1); 19 } 20 21 private int findLongest(String s, int i, int j){ 22 while(i>=0 && j<s.length() && s.charAt(i)==s.charAt(j)){ 23 i--; 24 j++; 25 } 26 return j-i-1; 27 } 28 }
DP 方法. dp[i][j]记录s.substring(i, j+1)是否为Palindromic.
dp[i][j] = (s.charAt(i) == s.charAt(j) && (j-i<2 || dp[i+1][j-1]).
Time Complexity: O(n^2). Space: O(n^2).
1 public class Solution { 2 public String longestPalindrome(String s) { 3 if(s == null || s.length() == 0){ 4 return s; 5 } 6 7 String res = ""; 8 int len = s.length(); 9 boolean [][] dp = new boolean[len][len]; 10 for(int i = len-1; i>=0; i--){ 11 for(int j = i; j<len; j++){ 12 //Need to check j-i < 2 first 13 //or IndexOutOfBondException 14 if(s.charAt(i) == s.charAt(j) && (j-i<2 || dp[i+1][j-1])){ 15 dp[i][j] = true; 16 if(j-i+1 > res.length()){ 17 res = s.substring(i, j+1); 18 } 19 } 20 } 21 } 22 return res; 23 } 24 }