原题链接在这里:https://leetcode.com/problems/split-array-largest-sum/
题目:
Given an array which consists of non-negative integers and an integer m, you can split the array into m non-empty continuous subarrays. Write an algorithm to minimize the largest sum among these m subarrays.
Note:
If n is the length of array, assume the following constraints are satisfied:
- 1 ≤ n ≤ 1000
- 1 ≤ m ≤ min(50, n)
Examples:
Input: nums = [7,2,5,10,8] m = 2 Output: 18 Explanation: There are four ways to split nums into two subarrays. The best way is to split it into [7,2,5] and [10,8], where the largest sum among the two subarrays is only 18.
题解:
Let dp[i][j] denotes up to index j, with i cut, the minimum of largest sum of subarrays.
Thus with i = 0, that means there is no cut. Initialize dp[0][j] as sum of nums[0] to nums[j].
For dp[i][j], we could cut at (0, 1, .... j -1). And minimize Math.max(dp[i - 1][k], dp[0][j] - dp[0][k]).
Note: update part, i starts from 1, becasue we need dp[i - 1][k].
Time Complexity: O(m * n ^ 2). n = nums.length.
Space: O(m * n).
AC Java:
1 class Solution { 2 public int splitArray(int[] nums, int m) { 3 if(nums == null || nums.length == 0){ 4 return 0; 5 } 6 7 int n = nums.length; 8 int [][] dp = new int[m][n]; 9 dp[0][0] = nums[0]; 10 for(int j = 1; j < n; j++){ 11 dp[0][j] = dp[0][j - 1] + nums[j]; 12 } 13 14 for(int i = 1; i < m; i++){ 15 for(int j = i; j < n; j++){ 16 int min = Integer.MAX_VALUE; 17 for(int k = 0; k < j; k ++){ 18 min = Math.min(min, Math.max(dp[i - 1][k], dp[0][j] - dp[0][k])); 19 } 20 21 dp[i][j] = min; 22 } 23 } 24 25 return dp[m - 1][n - 1]; 26 } 27 }