• AtCoder Beginner Contest 114 Solution


    A 753

    Solved.

     1     #include <bits/stdc++.h>
     2     using namespace std;
     3      
     4     int mp[10];
     5      
     6     int main()
     7     {
     8         mp[7] = mp[5] = mp[3] = 1;
     9         int x; cin >> x;
    10         puts(mp[x] ? "YES" : "NO");
    11     }
    View Code

    B 754

    Solved.

     1     #include <bits/stdc++.h>
     2     using namespace std;
     3      
     4     char s[20];
     5      
     6     int f(int x)
     7     {
     8         int res = 0;
     9         for (int i = 0; i < 3; ++i) res = res * 10 + s[i + x] - '0';
    10         return res;
    11     }
    12      
    13     int main()
    14     {
    15         while (scanf("%s", s + 1) != EOF)
    16         {
    17             int res = 0x3f3f3f3f, len = strlen(s + 1);
    18             for (int i = 1; i <= len - 2; ++i) res = min(res, abs(f(i) - 753));
    19             printf("%d
    ", res);
    20         }
    21         return 0;
    22     }
    View Code

    C 755

    Solved.

    题意:

    找出$[1, n]中有多少个只由'7', '5', '3' 组成,并且每个字符至少出现一次的数$

    思路:

    这样的数不会太多,DFS构造,然后二分

     1     #include <bits/stdc++.h>
     2     using namespace std;
     3      
     4     vector <int> v;
     5      
     6     bool ok(int x)
     7     {
     8         int flag[10] = {false};
     9         while (x)
    10         {
    11             flag[x % 10] = 1;
    12             x /= 10;
    13         }
    14         if (flag[3] == 0 || flag[5] == 0 || flag[7] == 0) return false;
    15         return true;
    16     }
    17      
    18     void DFS(int cur, int num)
    19     {
    20         if (cur == 10) 
    21         {
    22             if (ok(num)) v.push_back(num);
    23             return;
    24         }
    25         DFS(cur + 1, num);
    26         DFS(cur + 1, num * 10 + 3);
    27         DFS(cur + 1, num * 10 + 5);
    28         DFS(cur + 1, num * 10 + 7);
    29     }
    30      
    31     int main()
    32     {
    33         DFS(0, 0);
    34         sort(v.begin(), v.end());
    35         v.erase(unique(v.begin(), v.end()), v.end());
    36         int n;
    37         while (scanf("%d", &n) != EOF) printf("%d
    ", (int)(upper_bound(v.begin(), v.end(), n) - v.begin()));
    38         return 0;
    39     }
    View Code

    D 756

    Upsolved.

    题意:

    有$N!中所有因子中,有多少因子其拥有的因子个数恰好为75个$

    思路:

    我们考虑$75 = 75 cdot 1 = 25 cdot 3 = 15 cdot 5 = 5 cdot 5 cdot 3$

    那么我们处理出$N!中每个质因子一共有多少个,然后考虑质因子个数如何组成因子个数$

    考虑一个数$x = a_1^{p_1} cdot a_2^{p_2} cdot a_3^{p_3}$

    那么$a_1 可以提供的因子个数为 (p_1 + 1) 那么x 的因子个数即 (p_1 cdot p_2 cdot p_3)$

    然后简单组合一下就可以了

     1         #include <bits/stdc++.h>
     2         using namespace std;
     3          
     4         int n;
     5         int cnt[110];
     6         int tot[2100];
     7          
     8         int f(int l, int r)
     9         {
    10             int res = 0;
    11             for (int i = l; i <= r; ++i) res += tot[i];
    12             return res;
    13         }
    14          
    15         int main()
    16         {
    17             while (scanf("%d", &n) != EOF)
    18             {
    19                 memset(cnt, 0, sizeof cnt); 
    20                 memset(tot, 0, sizeof tot);
    21                 for (int i = 2; i <= n; ++i)
    22                 {
    23                     int tmp = i;
    24                     for(int j = 2; ; ++j) 
    25                     {
    26                         while (tmp % j == 0) 
    27                         {
    28                             ++cnt[j];
    29                             tmp /= j; 
    30                         }
    31                         if (tmp == 1) break; 
    32                     }
    33                 }
    34                 for (int i = 2; i <= 100; ++i) ++tot[cnt[i] + 1];  
    35                 int res = f(75, 2000);    
    36                 res += f(25, 2000) * f(3, 24);
    37                 res += f(25, 2000) * (f(25, 2000) - 1);
    38                 res += f(15, 2000) * f(5, 14);
    39                 res += f(15, 2000) * (f(15, 2000) - 1);
    40                 res += (f(5, 2000) * (f(5, 2000) - 1) / 2) * f(3, 4);    
    41                 res += ((f(5, 2000) * (f(5, 2000) - 1) / 2) * (f(5, 2000) - 2));
    42                 printf("%d
    ", res);
    43             }    
    44             return 0;
    45         }
    View Code
  • 相关阅读:
    只要我跑的够快,内卷它就卷不到我,一名高中生是如何做到在疫情下涨薪70%的?
    一个@Transaction哪里来这么多坑?
    基于netty实现一个完整的TFTP服务器
    DBeaver安装和注意要点
    Logstash将ES服务器A数据迁移ES服务器B
    Logstash迁移ES5.6.1一个索引多type类型迁移到ES7.6.2无type类型
    windows下使用filezilla上传文件权限问题
    logstash7.6.2更新已存在的elasticsearch记录
    mysql磁盘空间不足报错
    Kibana中DevTools命令集锦
  • 原文地址:https://www.cnblogs.com/Dup4/p/10055835.html
Copyright © 2020-2023  润新知