• Redis偶发连接失败案例分析


    【作者】

    张延俊:携程技术保障中心资深DBA,对数据库架构和疑难问题分析排查有浓厚的兴趣。
    寿向晨:携程技术保障中心高级DBA,主要负责携程Redis及DB的运维工作,在自动化运维,流程化及监控排障等方面有较多的实践经验,喜欢深入分析问题,提高团队运维效率。

    【问题描述】

     生产环境有一个Redis会偶尔发生连接失败的报错,报错的时间点、客户端IP并没有特别明显的规律,过一会儿,报错会自动恢复。
     以下是客户端报错信息:

    CRedis.Client.RExceptions.ExcuteCommandException: Unable to Connect redis server: ---> CRedis.Third.Redis.RedisException: Unable to Connect redis server:
       在 CRedis.Third.Redis.RedisNativeClient.CreateConnectionError()
       在 CRedis.Third.Redis.RedisNativeClient.SendExpectData(Byte[][] cmdWithBinaryArgs)
       在 CRedis.Client.Entities.RedisServer.<>c__DisplayClassd`1.b__c(RedisClient client)
       在 CRedis.Client.Logic.ClientPool.ExcuteAction[T](Func`2 action, String methodName)
       在 CRedis.Client.Logic.ClientPool.Excute[T](Func`2 action, String methodName)
    

     从报错的信息来看,应该是连接不上Redis所致。Redis的版本是2.8.19。虽然版本有点老,但基本运行稳定。
     线上环境只有这个集群有偶尔报错。这个集群的一个比较明显的特征是客户端服务器比较多,有上百台。

    【问题分析】

     从报错的信息来看,客户端连接不到服务端。常见的原因有以下几点:

    • 一个常见的原因是由于端口耗尽,对网络连接进行排查,在出问题的点上,TCP连接数远没有达到端口耗尽的场景,因此这个不是Redis连接不上的根本原因。
    • 另外一种常见的场景是在服务端有慢查询,导致Redis服务阻塞。我们在Redis服务端,把运行超过10毫秒的语句进行抓取,也没有抓到运行慢的语句。

     从服务端的部署的监控来看,出问题的点上,连接数有一个突然飙升,从3500个连接突然飙升至4100个连接。如下图显示:

    同时间,服务器端显示Redis服务端有丢包现象:345539 – 344683 = 856个包。

    Sat Apr  7 10:41:40 CST 2018
       1699 outgoing packets dropped
       92 dropped because of missing route
       344683 SYNs to LISTEN sockets dropped
       344683 times the listen queue of a socket overflowed
    
    Sat Apr  7 10:41:41 CST 2018
       1699 outgoing packets dropped
       92 dropped because of missing route
       345539 SYNs to LISTEN sockets dropped
       345539 times the listen queue of a socket overflowed
    

     客户端报错的原因基本确定,是因为建连速度太快,导致服务端backlog队列溢出,连接被server端reset。

    【关于backlog overflow】

     在高并发的短连接服务中,这是一种很常见的tcp报错类型。一个正常的tcp建连过程如下:

     1.client发送一个(SYN)给server

     2.server返回一个(SYN,ACK)给client

     3.client返回一个(ACK)

     三次握手结束,对client来说建连成功,client可以继续发送数据包给server,但是这个时候server端未必ready,如下图所示 :

    在BSD版本内核实现的tcp协议中,server端建连过程需要两个队列,一个是SYN queue,一个是accept queue。前者叫半开连接(或者半连接)队列,在接收到client发送的SYN时加入队列。(一种常见的网络攻击方式就是不断发送SYN但是不发送ACK从而导致server端的半开队列撑爆,server端拒绝服务。)后者叫全连接队列,server返回(SYN,ACK),在接收到client发送ACK后(此时client会认为建连已经完成,会开始发送PSH包),如果accept queue没有满,那么server从SYN queue把连接信息移到accept queue;如果此时accept queue溢出的话,server的行为要看配置。如果tcp_abort_on_overflow为0(默认),那么直接drop掉client发送的PSH包,此时client会进入重发过程,一段时间后server端重新发送SYN,ACK,重新从建连的第二步开始;如果tcp_abort_on_overflow为1,那么server端发现accept queue满之后直接发送reset。

    通过wireshark搜索发现在一秒内有超过2000次对Redis Server端发起建连请求。我们尝试修改tcp backlog大小,从511调整到2048, 问题并没有得到解决。所以此类微调,并不能彻底的解决问题。

    【网络包分析】

    我们用wireshark来识别网络拥塞的准确时间点和原因。我们已经有了准确的报错时间点,先用editcap把超大的tcp包裁剪一下,裁成30秒间隔,并通过wireshark I/O 100ms间隔分析网络阻塞的准确时间点:

     根据图标可以明显看到tcp的packets来往存在block。

     对该block前后的网络包进行明细分析,网络包来往情况如下:

    Time Source Dest Description
      12:01:54.6536050     Redis-Server     Clients     TCP:Flags=…AP…
      12:01:54.6538580     Redis-Server     Clients     TCP:Flags=…AP…
      12:01:54.6539770     Redis-Server     Clients     TCP:Flags=…AP…
      12:01:54.6720580     Redis-Server     Clients     TCP:Flags=…A..S..
      12:01:54.6727200     Redis-Server     Clients     TCP:Flags=…A……
      12:01:54.6808480     Redis-Server     Clients     TCP:Flags=…AP…..
      12:01:54.6910840     Redis-Server     Clients     TCP:Flags=…A…S.,
      12:01:54.6911950     Redis-Server     Clients     TCP:Flags=…A……
      …      …       …       …
      12:01:56.1181350     Redis-Server     Clients     TCP:Flags=…AP….

    12:01:54.6808480, Redis Server端向客户端发送了一个Push包,也就是对于查询请求的一个结果返回。后面的包都是在做连接处理,包括Ack包,Ack确认包,以及重置的RST包,紧接着下面一个Push包是在12:01:56.1181350发出的。中间的间隔是1.4372870秒。也就是说,在这1.4372870秒期间,Redis的服务器端,除了做一个查询,其他的操作都是在做建连,或拒绝连接。

    客户端报错的前后逻辑已经清楚了,redis-server卡了1.43秒,client的connection pool被打满,疯狂新建连接,server的accept queue满,直接拒绝服务,client报错。开始怀疑client发送了特殊命令,这时需要确认一下client的最后几个命令是什么,找到redis-server卡死前的第一个包,装一个wireshark的redis插件,看到最后几个命令是简单的get,并且key-value都很小,不至于需要耗费1.43秒才能完成。服务端也没有slow log,此时排障再次陷入僵局。

    【进一步分析】

    为了了解这1.43秒之内,Redis Server在做什么事情,我们用pstack来抓取信息。Pstack本质上是gdb attach. 高频率的抓取会影响redis的吞吐。死循环0.5秒一次无脑抓,在redis-server卡死的时候抓到堆栈如下(过滤了没用的栈信息):

    Thu May 31 11:29:18 CST 2018
    Thread 1 (Thread 0x7ff2db6de720 (LWP 8378)):
    #0  0x000000000048cec4 in ?? ()
    #1  0x00000000004914a4 in je_arena_ralloc ()
    #2  0x00000000004836a1 in je_realloc ()
    #3  0x0000000000422cc5 in zrealloc ()
    #4  0x00000000004213d7 in sdsRemoveFreeSpace ()
    #5  0x000000000041ef3c in clientsCronResizeQueryBuffer ()
    #6  0x00000000004205de in clientsCron ()
    #7  0x0000000000420784 in serverCron ()
    #8  0x0000000000418542 in aeProcessEvents ()
    #9  0x000000000041873b in aeMain ()
    #10 0x0000000000420fce in main ()
    Thu May 31 11:29:19 CST 2018
    Thread 1 (Thread 0x7ff2db6de720 (LWP 8378)):
    #0  0x0000003729ee5407 in madvise () from /lib64/libc.so.6
    #1  0x0000000000493a4e in je_pages_purge ()
    #2  0x000000000048cf70 in ?? ()
    #3  0x00000000004914a4 in je_arena_ralloc ()
    #4  0x00000000004836a1 in je_realloc ()
    #5  0x0000000000422cc5 in zrealloc ()
    #6  0x00000000004213d7 in sdsRemoveFreeSpace ()
    #7  0x000000000041ef3c in clientsCronResizeQueryBuffer ()
    #8  0x00000000004205de in clientsCron ()
    #9  0x0000000000420784 in serverCron ()
    #10 0x0000000000418542 in aeProcessEvents ()
    #11 0x000000000041873b in aeMain ()
    #12 0x0000000000420fce in main ()
    Thu May 31 11:29:19 CST 2018
    Thread 1 (Thread 0x7ff2db6de720 (LWP 8378)):
    #0  0x000000000048108c in je_malloc_usable_size ()
    #1  0x0000000000422be6 in zmalloc ()
    #2  0x00000000004220bc in sdsnewlen ()
    #3  0x000000000042c409 in createStringObject ()
    #4  0x000000000042918e in processMultibulkBuffer ()
    #5  0x0000000000429662 in processInputBuffer ()
    #6  0x0000000000429762 in readQueryFromClient ()
    #7  0x000000000041847c in aeProcessEvents ()
    #8  0x000000000041873b in aeMain ()
    #9  0x0000000000420fce in main ()
    Thu May 31 11:29:20 CST 2018
    Thread 1 (Thread 0x7ff2db6de720 (LWP 8378)):
    #0  0x000000372a60e7cd in write () from /lib64/libpthread.so.0
    #1  0x0000000000428833 in sendReplyToClient ()
    #2  0x0000000000418435 in aeProcessEvents ()
    #3  0x000000000041873b in aeMain ()
    #4  0x0000000000420fce in main ()
    

    重复多次抓取后,从堆栈中发现可疑堆栈clientsCronResizeQueryBuffer位置,属于serverCron()函数下,这个redis-server内部的定时调度,并不在用户线程下,这个解释了为什么卡死的时候没有出现慢查询。

    查看redis源码,确认到底redis-server在做什么:

    clientsCron(server.h):
    #define CLIENTS_CRON_MIN_ITERATIONS 5
    void clientsCron(void) {
        /* Make sure to process at least numclients/server.hz of clients
         * per call. Since this function is called server.hz times per second
         * we are sure that in the worst case we process all the clients in 1
         * second. */
        int numclients = listLength(server.clients);
        int iterations = numclients/server.hz;
        mstime_t now = mstime();
    
        /* Process at least a few clients while we are at it, even if we need
         * to process less than CLIENTS_CRON_MIN_ITERATIONS to meet our contract
         * of processing each client once per second. */
        if (iterations < CLIENTS_CRON_MIN_ITERATIONS)
            iterations = (numclients < CLIENTS_CRON_MIN_ITERATIONS) ?
                         numclients : CLIENTS_CRON_MIN_ITERATIONS;
    
        while(listLength(server.clients) && iterations--) {
            client *c;
            listNode *head;
    
            /* Rotate the list, take the current head, process.
             * This way if the client must be removed from the list it's the
             * first element and we don't incur into O(N) computation. */
            listRotate(server.clients);
            head = listFirst(server.clients);
            c = listNodeValue(head);
            /* The following functions do different service checks on the client.
             * The protocol is that they return non-zero if the client was
             * terminated. */
            if (clientsCronHandleTimeout(c,now)) continue;
            if (clientsCronResizeQueryBuffer(c)) continue;
        }
    }

    clientsCron首先判断当前client的数量,用于控制一次清理连接的数量,生产服务器单实例的连接数量在5000不到,也就是一次清理的连接数是50个。

    clientsCronResizeQueryBuffer(server.h):
    
    /* The client query buffer is an sds.c string that can end with a lot of
     * free space not used, this function reclaims space if needed.
     *
     * The function always returns 0 as it never terminates the client. */
    int clientsCronResizeQueryBuffer(client *c) {
        size_t querybuf_size = sdsAllocSize(c->querybuf);
        time_t idletime = server.unixtime - c->lastinteraction;
    
        /* 只在以下两种情况下会Resize query buffer:
         * 1) Query buffer > BIG_ARG(在server.h 中定义#define PROTO_MBULK_BIG_ARG     (1024*32)) 
               且这个Buffer的小于一段时间的客户端使用的峰值.
         * 2) 客户端空闲超过2s且Buffer size大于1k. */
        if (((querybuf_size > PROTO_MBULK_BIG_ARG) &&
             (querybuf_size/(c->querybuf_peak+1)) > 2) ||
             (querybuf_size > 1024 && idletime > 2))
        {
            /* Only resize the query buffer if it is actually wasting space. */
            if (sdsavail(c->querybuf) > 1024) {
                c->querybuf = sdsRemoveFreeSpace(c->querybuf);
            }
        }
        /* Reset the peak again to capture the peak memory usage in the next
         * cycle. */
        c->querybuf_peak = 0;
        return 0;
    }

    如果redisClient对象的query buffer满足条件,那么就直接resize掉。满足条件的连接分成两种,一种是真的很大的,比该客户端一段时间内使用的峰值还大;还有一种是很闲(idle>2)的,这两种都要满足一个条件,就是buffer free的部分超过1k。那么redis-server卡住的原因就是正好有那么50个很大的或者空闲的并且free size超过了1k大小连接的同时循环做了resize,由于redis都属于单线程工作的程序,所以block了client。那么解决这个问题办法就很明朗了,让resize 的频率变低或者resize的执行速度变快。

    既然问题出在query buffer上,我们先看一下这个东西被修改的位置:

    readQueryFromClient(networking.c):
    redisClient *createClient(int fd) {
        redisClient *c = zmalloc(sizeof(redisClient));
    
        /* passing -1 as fd it is possible to create a non connected client.
         * This is useful since all the Redis commands needs to be executed
         * in the context of a client. When commands are executed in other
         * contexts (for instance a Lua script) we need a non connected client. */
        if (fd != -1) {
            anetNonBlock(NULL,fd);
            anetEnableTcpNoDelay(NULL,fd);
            if (server.tcpkeepalive)
                anetKeepAlive(NULL,fd,server.tcpkeepalive);
            if (aeCreateFileEvent(server.el,fd,AE_READABLE,
                readQueryFromClient, c) == AE_ERR)
            {
                close(fd);
                zfree(c);
                return NULL;
            }
        }
    
        selectDb(c,0);
        c->id = server.next_client_id++;
        c->fd = fd;
        c->name = NULL;
        c->bufpos = 0;
        c->querybuf = sdsempty(); 初始化是0
    
    readQueryFromClient(networking.c):
    void readQueryFromClient(aeEventLoop *el, int fd, void *privdata, int mask) {
        redisClient *c = (redisClient*) privdata;
        int nread, readlen;
        size_t qblen;
        REDIS_NOTUSED(el);
        REDIS_NOTUSED(mask);
    
        server.current_client = c;
        readlen = REDIS_IOBUF_LEN;
        /* If this is a multi bulk request, and we are processing a bulk reply
         * that is large enough, try to maximize the probability that the query
         * buffer contains exactly the SDS string representing the object, even
         * at the risk of requiring more read(2) calls. This way the function
         * processMultiBulkBuffer() can avoid copying buffers to create the
         * Redis Object representing the argument. */
        if (c->reqtype == REDIS_REQ_MULTIBULK && c->multibulklen && c->bulklen != -1
            && c->bulklen >= REDIS_MBULK_BIG_ARG)
        {
            int remaining = (unsigned)(c->bulklen+2)-sdslen(c->querybuf);
    
            if (remaining < readlen) readlen = remaining;
        }
    
        qblen = sdslen(c->querybuf);
        if (c->querybuf_peak < qblen) c->querybuf_peak = qblen;
        c->querybuf = sdsMakeRoomFor(c->querybuf, readlen); 在这里会被扩大
    

    由此可见c->querybuf在连接第一次读取命令后的大小就会被分配至少1024*32,所以回过头再去看resize的清理逻辑就明显存在问题,每个被使用到的query buffer的大小至少就是1024*32,但是清理的时候判断条件是>1024,也就是说,所有的idle>2的被使用过的连接都会被resize掉,下次接收到请求的时候再重新分配到1024*32,这个其实是没有必要的,在访问比较频繁的群集,内存会被频繁得回收重分配,所以我们尝试将清理的判断条件改造为如下,就可以避免大部分没有必要的resize操作:

    if (((querybuf_size > REDIS_MBULK_BIG_ARG) &&
             (querybuf_size/(c->querybuf_peak+1)) > 2) ||
             (querybuf_size > 1024*32 && idletime > 2))
        {
            /* Only resize the query buffer if it is actually wasting space. */
            if (sdsavail(c->querybuf) > 1024*32) {
                c->querybuf = sdsRemoveFreeSpace(c->querybuf);
            }
        }
    

    这个改造的副作用是内存的开销,按照一个实例5k连接计算,5000*1024*32=160M,这点内存消耗对于上百G内存的服务器完全可以接受。

    【问题重现】

    在使用修改过源码的Redis server后,问题仍然重现了,客户端还是会报同类型的错误,且报错的时候,服务器内存依然会出现抖动。抓取内存堆栈信息如下:

    Thu Jun 14 21:56:54 CST 2018
    #3  0x0000003729ee893d in clone () from /lib64/libc.so.6
    Thread 1 (Thread 0x7f2dc108d720 (LWP 27851)):
    #0  0x0000003729ee5400 in madvise () from /lib64/libc.so.6
    #1  0x0000000000493a1e in je_pages_purge ()
    #2  0x000000000048cf40 in arena_purge ()
    #3  0x00000000004a7dad in je_tcache_bin_flush_large ()
    #4  0x00000000004a85e9 in je_tcache_event_hard ()
    #5  0x000000000042c0b5 in decrRefCount ()
    #6  0x000000000042744d in resetClient ()
    #7  0x000000000042963b in processInputBuffer ()
    #8  0x0000000000429762 in readQueryFromClient ()
    #9  0x000000000041847c in aeProcessEvents ()
    #10 0x000000000041873b in aeMain ()
    #11 0x0000000000420fce in main ()
    Thu Jun 14 21:56:54 CST 2018
    Thread 1 (Thread 0x7f2dc108d720 (LWP 27851)):
    #0  0x0000003729ee5400 in madvise () from /lib64/libc.so.6
    #1  0x0000000000493a1e in je_pages_purge ()
    #2  0x000000000048cf40 in arena_purge ()
    #3  0x00000000004a7dad in je_tcache_bin_flush_large ()
    #4  0x00000000004a85e9 in je_tcache_event_hard ()
    #5  0x000000000042c0b5 in decrRefCount ()
    #6  0x000000000042744d in resetClient ()
    #7  0x000000000042963b in processInputBuffer ()
    #8  0x0000000000429762 in readQueryFromClient ()
    #9  0x000000000041847c in aeProcessEvents ()
    #10 0x000000000041873b in aeMain ()
    #11 0x0000000000420fce in main ()
    

    显然,Querybuffer被频繁resize的问题已经得到了优化,但是还是会出现客户端报错。这就又陷入了僵局。难道还有其他因素导致query buffer resize变慢?我们再次抓取pstack。但这时,jemalloc引起了我们的注意。此时回想Redis的内存分配机制,Redis为避免libc内存不被释放导致大量内存碎片的问题,默认使用的是jemalloc用作内存分配管理,这次报错的堆栈信息中都是je_pages_purge () redis在调用jemalloc回收脏页。我们看下jemalloc做了些什么:

    arena_purge(arena.c)
    static void
    arena_purge(arena_t *arena, bool all)
    {
    	arena_chunk_t *chunk;
    	size_t npurgatory;
    	if (config_debug) {
    		size_t ndirty = 0;
    
    		arena_chunk_dirty_iter(&arena->chunks_dirty, NULL,
    		    chunks_dirty_iter_cb, (void *)&ndirty);
    		assert(ndirty == arena->ndirty);
    	}
    	assert(arena->ndirty > arena->npurgatory || all);
    	assert((arena->nactive >> opt_lg_dirty_mult) < (arena->ndirty -
    	    arena->npurgatory) || all);
    
    	if (config_stats)
    		arena->stats.npurge++;
    	npurgatory = arena_compute_npurgatory(arena, all);
    	arena->npurgatory += npurgatory;
    
    	while (npurgatory > 0) {
    		size_t npurgeable, npurged, nunpurged;
    
    		/* Get next chunk with dirty pages. */
    		chunk = arena_chunk_dirty_first(&arena->chunks_dirty);
    		if (chunk == NULL) {
    			arena->npurgatory -= npurgatory;
    			return;
    		}
    		npurgeable = chunk->ndirty;
    		assert(npurgeable != 0);
    
    		if (npurgeable > npurgatory && chunk->nruns_adjac == 0) {
    	
    			arena->npurgatory += npurgeable - npurgatory;
    			npurgatory = npurgeable;
    		}
    		arena->npurgatory -= npurgeable;
    		npurgatory -= npurgeable;
    		npurged = arena_chunk_purge(arena, chunk, all);
    		nunpurged = npurgeable - npurged;
    		arena->npurgatory += nunpurged;
    		npurgatory += nunpurged;
    	}
    }
    

    Jemalloc每次回收都会判断所有实际应该清理的chunck并对清理做count,这个操作对于高响应要求的系统是很奢侈的,所以我们考虑通过升级jemalloc的版本来优化purge的性能。Redis 4.0版本发布后,性能有很大的改进,并可以通过命令回收内存,我们线上也正准备进行升级,跟随4.0发布的jemalloc版本为4.1,jemalloc的版本使用的在jemalloc的4.0之后版本的arena_purge()做了很多优化,去掉了计数器的调用,简化了很多判断逻辑,增加了arena_stash_dirty()方法合并了之前的计算和判断逻辑,增加了purge_runs_sentinel,用保持脏块在每个arena LRU中的方式替代之前的保持脏块在arena树的dirty-run-containing chunck中的方式,大幅度减少了脏块purge的体积,并且在内存回收过程中不再移动内存块。代码如下:

    arena_purge(arena.c)
    static void
    arena_purge(arena_t *arena, bool all)
    {
    	chunk_hooks_t chunk_hooks = chunk_hooks_get(arena);
    	size_t npurge, npurgeable, npurged;
    	arena_runs_dirty_link_t purge_runs_sentinel;
    	extent_node_t purge_chunks_sentinel;
    
    	arena->purging = true;
    
    	/*
    	 * Calls to arena_dirty_count() are disabled even for debug builds
    	 * because overhead grows nonlinearly as memory usage increases.
    	 */
    	if (false && config_debug) {
    		size_t ndirty = arena_dirty_count(arena);
    		assert(ndirty == arena->ndirty);
    	}
    	assert((arena->nactive >> arena->lg_dirty_mult) < arena->ndirty || all);
    
    	if (config_stats)
    		arena->stats.npurge++;
    
    	npurge = arena_compute_npurge(arena, all);
    	qr_new(&purge_runs_sentinel, rd_link);
    	extent_node_dirty_linkage_init(&purge_chunks_sentinel);
    
    	npurgeable = arena_stash_dirty(arena, &chunk_hooks, all, npurge,
    	    &purge_runs_sentinel, &purge_chunks_sentinel);
    	assert(npurgeable >= npurge);
    	npurged = arena_purge_stashed(arena, &chunk_hooks, &purge_runs_sentinel,
    	    &purge_chunks_sentinel);
    	assert(npurged == npurgeable);
    	arena_unstash_purged(arena, &chunk_hooks, &purge_runs_sentinel,
    	    &purge_chunks_sentinel);
    
    	arena->purging = false;
    }
    

    【解决问题】

    实际上我们有多个选项。可以使用Google的tcmalloc来代替jemalloc,可以升级jemalloc的版本等等。我们根据上面的分析,尝试通过升级jemalloc版本,实际操作为升级Redis版本来解决。我们将Redis的版本升级到4.0.9之后观察,线上客户端连接超时这个棘手的问题得到了解决。

    【问题总结】

    Redis在生产环境中因其支持高并发,响应快,易操作被广泛使用,对于运维人员而言,其响应时间的要求带来了各种各样的问题,Redis的连接超时问题是其中比较典型的一种,从发现问题,客户端连接超时,到通过抓取客户端与服务端的网络包,内存堆栈定位问题,也被其中一些假象所迷惑,最终通过升级jemalloc(Redis)的版本解决问题,这次最值得总结和借鉴的是整个分析的思路。

  • 相关阅读:
    【L.M.W.Y.D】Scrum Meeting 2
    【L.M.W.Y.D】Scrum Meeting 1
    L.M.W.Y.D 实验八 团队作业4—团队项目需求建模与系统设计
    L.M.W.Y.D 实验七 团队作业3:团队项目需求分析与原型设计
    L.M.W.Y.D 实验六 团队作业2:健康管理系统
    L.M.W.Y.D 实验五 团队作业1:软件研发团队组建与软件案例分析
    多喝热水 [Alpha] Scrum Meeting 3
    多喝热水 [Alpha] Scrum Meeting 2
    多喝热水 [Alpha] Scrum Meeting 1
    多喝热水 实验八 团队作业4:团队项目需求建模与系统设计
  • 原文地址:https://www.cnblogs.com/CtripDBA/p/9776466.html
Copyright © 2020-2023  润新知