• P1052 过河


    题目描述 Description

    在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧。在桥上有一些石子,青蛙很讨厌踩在这些石子上。由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点:0,1,……,L(其中L是桥的长度)。坐标为0的点表示桥的起点,坐标为L的点表示桥的终点。青蛙从桥的起点开始,不停的向终点方向跳跃。一次跳跃的距离是S到T之间的任意正整数(包括S,T)。当青蛙跳到或跳过坐标为L的点时,就算青蛙已经跳出了独木桥。
    题目给出独木桥的长度L,青蛙跳跃的距离范围S,T,桥上石子的位置。你的任务是确定青蛙要想过河,最少需要踩到的石子数。

    输入描述 Input Description

    输入第一行有一个正整数L(1<=L<=109),表示独木桥的长度。第二行有三个正整数S,T,M,分别表示青蛙一次跳跃的最小距离,最大距离,及桥上石子的个数,其中1<=S<=T<=10,1<=M<=100。第三行有M个不同的正整数分别表示这M个石子在数轴上的位置(数据保证桥的起点和终点处没有石子)。所有相邻的整数之间用一个空格隔开。

    输出描述 Output Description

    输出只包括一个整数,表示青蛙过河最少需要踩到的石子数。

    样例输入 Sample Input

    10
    2 3 5
    2 3 5 6 7

    样例输出 Sample Output

    2

    数据范围及提示 Data Size & Hint

    数据规模


    对于30%的数据,L<=10000;

    对于全部的数据,L<=109。

     分析
       @如果只是30%的数据,递推就行了。
        
        for(int i=1;i<=l+t-1;i++)
          for(int j=s;j<=t;j++)
          if(i>=j&&i-j<l) 
          {
              if(!b[i])
                  f[i]=min(f[i-j],f[i]);
              else f[i]=min(f[i-j]+1,f[i]);        仅这样就能过。
       }
      @可是看看数据范围,l<=10^9,老老实实从头到尾的推过来肯定是不行的。
             再看,1<=S<=T<=10,1<=M<=100,原来这是个稀疏图。
      @这样的话连个点之间一定有超长的空白。
        这段空白就是干耗时间的,想一下:每次最多跳T个单位,中间那k*T(k>=2)的路程中递推只是在单纯地复制而已。
        其实走
    那k*T(k>=2)的路程,和跳d%T+T 这段距离得到的结果是一样的。
      @到这里我们就找到了解决高耗时的办法————压缩路径。把原来的距离用d数组记一下,对于很长的那一段(即d>=2T的那种)我们就压缩成d%T+T。
    既不影响结果,又能省时间。
        
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    #include<cstdio> 
    #include<queue>
    #include<math.h>
    using namespace std;
    int l,s,t,m;
    int a[110],d[110],q[110],f[3000],ans=9999999;
    bool b[3000];
    int main()
    {
        scanf("%d",&l);
        scanf("%d%d%d",&s,&t,&m);
        
    if(s!=t)    
    {
        for(int i=1;%<=m;i++)
            scanf("%d",&a[i]);
        sort(a+1,a+1+m);
        for(int i=1;i<=m;i++)//求出点与点之间的距离,压缩对象是距离
        {
            d[i]=a[i]-a[i-1];
            q[i]=d[i]%t;
        }
        for(int i=1;i<=m;i++)
        {
            if(d[i]<=t+q[i]) //距离小的话,没必要压缩
                a[i]=a[i-1]+d[i];
            else a[i]=a[i-1]+t+q[i];
            b[a[i]]=1;
        }
        int p=(l-a[m])%t;
        l=a[m]+t+p;//压缩后终点也变了(也可以看成是,把第M个点和终点之间的距离压缩了)
        memset(f,0x7f,sizeof(f));
        f[0]=0;
        for(int i=1;i<=l+t-1;i++)
        for(int j=s;j<=t;j++)
        if(i>=j&&i-j<l) 
        {
            if(!b[i])
                f[i]=min(f[i-j],f[i]);
            else f[i]=min(f[i-j]+1,f[i]);    
        }
        for(int i=l;i<=l+t-1;i++)
            ans=min(ans,f[i]);
        cout<<ans;return 0;
    }    else
    {
        ans=0;//特殊情况"t==s"每次的移动距离固定,也就不存在什么选择了。
        for(int i=1;i<=m;i++)
        {
            scanf("%d",&a[i]);
            if(a[i]%t==0) 
                ans++; 
        }
        cout<<ans;return 0; 
    }
        return 0;
    }
  • 相关阅读:
    【R】爬虫案例
    [R] 保存pheatmap图片对象到文件
    [R] 添加误差棒的分组折线图:geom_path: Each group consists of only one observation. Do you need to adjust the...
    [R] read.table/read.delim读入数据行数变少?
    [R] cbind和filter函数的坑
    [R]在dplyr函数的基础上编写函数(3)tidyeval
    [R]在dplyr基础上编写函数(2)substitute和quote
    30个Java知识点
    Java的30个知识点
    40个知识点
  • 原文地址:https://www.cnblogs.com/CLGYPYJ/p/6952901.html
Copyright © 2020-2023  润新知