• Yet Another Ball Problem


    Yet Another Ball Problem
    time limit per test
    3 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    The king of Berland organizes a ball! nn pair are invited to the ball, they are numbered from 11 to nn . Each pair consists of one man and one woman. Each dancer (either man or woman) has a monochrome costume. The color of each costume is represented by an integer from 11 to kk , inclusive.

    Let bibi be the color of the man's costume and gigi be the color of the woman's costume in the ii -th pair. You have to choose a color for each dancer's costume (i.e. values b1,b2,,bnb1,b2,…,bn and g1,g2,gng1,g2,…gn ) in such a way that:

    1. for every ii : bibi and gigi are integers between 11 and kk , inclusive;
    2. there are no two completely identical pairs, i.e. no two indices i,ji,j (iji≠j ) such that bi=bjbi=bj and gi=gjgi=gj at the same time;
    3. there is no pair such that the color of the man's costume is the same as the color of the woman's costume in this pair, i.e. bigibi≠gi for every ii ;
    4. for each two consecutive (adjacent) pairs both man's costume colors and woman's costume colors differ, i.e. for every ii from 11 to n1n−1 the conditions bibi+1bi≠bi+1 and gigi+1gi≠gi+1 hold.

    Let's take a look at the examples of bad and good color choosing (for n=4n=4 and k=3k=3 , man is the first in a pair and woman is the second):

    Bad color choosing:

    • (1,2)(1,2) , (2,3)(2,3) , (3,2)(3,2) , (1,2)(1,2) — contradiction with the second rule (there are equal pairs);
    • (2,3)(2,3) , (1,1)(1,1) , (3,2)(3,2) , (1,3)(1,3) — contradiction with the third rule (there is a pair with costumes of the same color);
    • (1,2)(1,2) , (2,3)(2,3) , (1,3)(1,3) , (2,1)(2,1) — contradiction with the fourth rule (there are two consecutive pairs such that colors of costumes of men/women are the same).

    Good color choosing:

    • (1,2)(1,2) , (2,1)(2,1) , (1,3)(1,3) , (3,1)(3,1) ;
    • (1,2)(1,2) , (3,1)(3,1) , (2,3)(2,3) , (3,2)(3,2) ;
    • (3,1)(3,1) , (1,2)(1,2) , (2,3)(2,3) , (3,2)(3,2) .

    You have to find any suitable color choosing or say that no suitable choosing exists.

    Input

    The only line of the input contains two integers nn and kk (2n,k21052≤n,k≤2⋅105 ) — the number of pairs and the number of colors.

    Output

    If it is impossible to find any suitable colors choosing, print "NO".

    Otherwise print "YES" and then the colors of the costumes of pairs in the next nn lines. The ii -th line should contain two integers bibi and gigi — colors of costumes of man and woman in the ii -th pair, respectively.

    You can print each letter in any case (upper or lower). For example, "YeS", "no" and "yES" are all acceptable.

    Examples
    Input
    Copy
    4 3
    
    Output
    Copy
    YES
    3 1
    1 3
    3 2
    2 3
    
    Input
    Copy
    10 4
    
    Output
    Copy
    YES
    2 1
    1 3
    4 2
    3 4
    4 3
    3 2
    2 4
    4 1
    1 4
    3 1
    
    Input
    Copy
    13 4
    
    Output
    Copy
    NO
     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 #define ll long long
     4 int main(int argc, char const *argv[])
     5 {
     6     ll n,k;
     7     cin>>n>>k;
     8     if(n>k*(k-1)) cout<<"NO
    "<<endl;
     9     else{
    10         cout<<"YES
    "<<endl;
    11         int cnt=0;
    12         for( ll i=1; i<=k; i++ ){
    13             for( ll j=i+1; j<=k; j++ ){
    14                 cout<<i<<" "<<j<<endl;
    15                 cnt++;
    16                 if(cnt>=n) return 0;
    17                 cout<<j<<" "<<i<<endl;
    18                 cnt++;
    19                 if(cnt>=n) return 0;
    20             }
    21         }
    22     }
    23     return 0;
    24 }
    有些目标看似很遥远,但只要付出足够多的努力,这一切总有可能实现!
  • 相关阅读:
    SMTP发邮件(直接可用)实例
    ADO.NET(二)
    ADO.NET(一)
    C# 反射(一)
    APサーバ
    DB2 相关操作
    ArrayList与LinkedList时间复杂度之对比
    java泛型问题 关于警告:XX is a raw type
    Java编程中提高性能的几点建议
    STRUTS2核心控制器:FilterDispatcher
  • 原文地址:https://www.cnblogs.com/Bravewtz/p/10466309.html
Copyright © 2020-2023  润新知