• PAT 1053 Path of Equal Weight[比较]


    1053 Path of Equal Weight(30 分)

    Given a non-empty tree with root R, and with weight Wi​​ assigned to each tree node Ti​​. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L.

    Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let's consider the tree showed in the following figure: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in the figure.

    Input Specification:

    Each input file contains one test case. Each case starts with a line containing 0<N100, the number of nodes in a tree, M (<N), the number of non-leaf nodes, and 0<S<230​​, the given weight number. The next line contains N positive numbers where Wi​​ (<1000) corresponds to the tree node Ti​​. Then M lines follow, each in the format:

    ID K ID[1] ID[2] ... ID[K]
    

    where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 00.

    Output Specification:

    For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.

    Note: sequence {A1​​,A2​​,,An​​} is said to be greater than sequence {B1​​,B2​​,,Bm​​} if there exists 1k<min{n,m} such that Ai​​=Bi​​ for i=1,,k, and Ak+1​​>Bk+1​​.

    Sample Input:

    20 9 24
    10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2
    00 4 01 02 03 04
    02 1 05
    04 2 06 07
    03 3 11 12 13
    06 1 09
    07 2 08 10
    16 1 15
    13 3 14 16 17
    17 2 18 19
    

    Sample Output:

    10 5 2 7
    10 4 10
    10 3 3 6 2
    10 3 3 6 2

    题目大意:给出一棵树,每个节点有一个编号和一个权重,输入给定了一个总权重K,求根节点R到任一叶子节点的路径代价=总权重K,找出所有这样的路径,并按字典序从大到小输出。

    //我的代码:写不下去的:

    #include <cstdio>
    #include<iostream>
    #include <vector>
    #include<set>
    #include<map>
    using namespace std;
    vector<int> vt[105];
    map<int,int> mp;
    vector<int> path;//用什么去存这个路径呢?
    set<vector<int>> st;
    void dfs(int r){//你这sum都没有作为参数传进去欸。。。
        if(vt[r].size()==0){//这里你还判断错了。。
            for(int i=0;i<path.size();i++){
                st.insert(path);
            }
            return ;
        }
        path.push_back(r);
        //最后怎么将其按照字典序排序呢?
        for(int i=vt[r][0];i<vt[r].size();i++){
            path.push_back(vt[r][i]);
            dfs(i);//.没有这个函数啊.
            path.erase(vt[r][i]);
        }
    
    }
    int main(){
        int n,leaf,k;
        cin>>n>>leaf>>k;
        int weight;
        for(int i=0;i<n;i++){
            cin>>weight;
            mp[i]=weight;
        }
        int nei=n-leaf;
        int u,ct,temp;
        for(int i=0;i<nei;i++){
            cin>>u>>ct;
            for(int j=0;j<ct;j++){
                cin>>temp;
                vt[u].push_back(temp);
            }
        }
        //path.push_back(0);
        dfs(0);
        return 0;
    }
    View Code

    //dfs很多东西都没考虑好。

    代码来自:https://www.liuchuo.net/archives/2285

    #include <iostream>
    #include <vector>
    #include <algorithm>
    using namespace std;
    int target;
    struct NODE {
        int w;
        vector<int> child;//将孩子节点作为一个向量进行存储。便于排序
    };
    vector<NODE> v;
    vector<int> path;
    void dfs(int index, int nodeNum, int sum) {
        if(sum > target) return ;
        if(sum == target) {
            if(v[index].child.size() != 0) return;//如果不是叶节点那么也返回。
            for(int i = 0; i < nodeNum; i++)
                printf("%d%c", v[path[i]].w, i != nodeNum - 1 ? ' ' : '
    ');//直接在输出判断,十分简洁。
            return ;
        }
        for(int i = 0; i < v[index].child.size(); i++) {
            int node = v[index].child[i];
            path[nodeNum] = node;//不是push_back,向量没有erase函数,所以传了个参数表示节点数量。
            dfs(node, nodeNum + 1, sum + v[node].w);
        }
    
    }
    int cmp1(int a, int b) {
        return v[a].w > v[b].w;
    }
    int main() {
        int n, m, node, k;
        scanf("%d %d %d", &n, &m, &target);
        v.resize(n), path.resize(n);
        for(int i = 0; i < n; i++)
            scanf("%d", &v[i].w);
        for(int i = 0; i < m; i++) {
            scanf("%d %d", &node, &k);
            v[node].child.resize(k);
            for(int j = 0; j < k; j++)
                scanf("%d", &v[node].child[j]);
            sort(v[node].child.begin(), v[node].child.end(), cmp1);
            //对子节点从大到小排序,这样就能保证是按字典序最大来找到并输出的。
        }
        dfs(0, 1, v[0].w);
        return 0;
    }

    1.如何保证输出的路径是按字典序从大到小呢?将每个节点的子节点按权重从大到小排列即可。学习了

    2.path如果用Vector表示,但是又不能弹出,该怎么办呢?在dfs中传入参数nodeNum,而不是在跳出递归进行计算时,使用path.size();下一次的就被覆盖了。

    3.要注意dfs传入的参数,当前下标、解中节点数、总和。

    //值得学习! 

  • 相关阅读:
    [转载] CSS模块化【封装继承多态】
    【转】jquery图片播放插件Fancybox使用方法
    指定打印宽度,左&右对其
    预测编码与帧间压缩方法
    字符串
    静态变量 static
    利用getchar, putchar复制文件
    排序
    printf 语句
    Ubuntu 宽带连接
  • 原文地址:https://www.cnblogs.com/BlueBlueSea/p/9560510.html
Copyright © 2020-2023  润新知