1053 Path of Equal Weight(30 分)
Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L.
Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let's consider the tree showed in the following figure: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in the figure.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 0<N≤100, the number of nodes in a tree, M (<N), the number of non-leaf nodes, and 0<S<230, the given weight number. The next line contains N positive numbers where Wi (<1000) corresponds to the tree node Ti. Then M lines follow, each in the format:
ID K ID[1] ID[2] ... ID[K]
where ID
is a two-digit number representing a given non-leaf node, K
is the number of its children, followed by a sequence of two-digit ID
's of its children. For the sake of simplicity, let us fix the root ID to be 00
.
Output Specification:
For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.
Note: sequence {A1,A2,⋯,An} is said to be greater than sequence {B1,B2,⋯,Bm} if there exists 1≤k<min{n,m} such that Ai=Bi for i=1,⋯,k, and Ak+1>Bk+1.
Sample Input:
20 9 24
10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2
00 4 01 02 03 04
02 1 05
04 2 06 07
03 3 11 12 13
06 1 09
07 2 08 10
16 1 15
13 3 14 16 17
17 2 18 19
Sample Output:
10 5 2 7
10 4 10
10 3 3 6 2
10 3 3 6 2
题目大意:给出一棵树,每个节点有一个编号和一个权重,输入给定了一个总权重K,求根节点R到任一叶子节点的路径代价=总权重K,找出所有这样的路径,并按字典序从大到小输出。
//我的代码:写不下去的:
#include <cstdio> #include<iostream> #include <vector> #include<set> #include<map> using namespace std; vector<int> vt[105]; map<int,int> mp; vector<int> path;//用什么去存这个路径呢? set<vector<int>> st; void dfs(int r){//你这sum都没有作为参数传进去欸。。。 if(vt[r].size()==0){//这里你还判断错了。。 for(int i=0;i<path.size();i++){ st.insert(path); } return ; } path.push_back(r); //最后怎么将其按照字典序排序呢? for(int i=vt[r][0];i<vt[r].size();i++){ path.push_back(vt[r][i]); dfs(i);//.没有这个函数啊. path.erase(vt[r][i]); } } int main(){ int n,leaf,k; cin>>n>>leaf>>k; int weight; for(int i=0;i<n;i++){ cin>>weight; mp[i]=weight; } int nei=n-leaf; int u,ct,temp; for(int i=0;i<nei;i++){ cin>>u>>ct; for(int j=0;j<ct;j++){ cin>>temp; vt[u].push_back(temp); } } //path.push_back(0); dfs(0); return 0; }
//dfs很多东西都没考虑好。
代码来自:https://www.liuchuo.net/archives/2285
#include <iostream> #include <vector> #include <algorithm> using namespace std; int target; struct NODE { int w; vector<int> child;//将孩子节点作为一个向量进行存储。便于排序 }; vector<NODE> v; vector<int> path; void dfs(int index, int nodeNum, int sum) { if(sum > target) return ; if(sum == target) { if(v[index].child.size() != 0) return;//如果不是叶节点那么也返回。 for(int i = 0; i < nodeNum; i++) printf("%d%c", v[path[i]].w, i != nodeNum - 1 ? ' ' : ' ');//直接在输出判断,十分简洁。 return ; } for(int i = 0; i < v[index].child.size(); i++) { int node = v[index].child[i]; path[nodeNum] = node;//不是push_back,向量没有erase函数,所以传了个参数表示节点数量。 dfs(node, nodeNum + 1, sum + v[node].w); } } int cmp1(int a, int b) { return v[a].w > v[b].w; } int main() { int n, m, node, k; scanf("%d %d %d", &n, &m, &target); v.resize(n), path.resize(n); for(int i = 0; i < n; i++) scanf("%d", &v[i].w); for(int i = 0; i < m; i++) { scanf("%d %d", &node, &k); v[node].child.resize(k); for(int j = 0; j < k; j++) scanf("%d", &v[node].child[j]); sort(v[node].child.begin(), v[node].child.end(), cmp1); //对子节点从大到小排序,这样就能保证是按字典序最大来找到并输出的。 } dfs(0, 1, v[0].w); return 0; }
1.如何保证输出的路径是按字典序从大到小呢?将每个节点的子节点按权重从大到小排列即可。学习了
2.path如果用Vector表示,但是又不能弹出,该怎么办呢?在dfs中传入参数nodeNum,而不是在跳出递归进行计算时,使用path.size();下一次的就被覆盖了。
3.要注意dfs传入的参数,当前下标、解中节点数、总和。
//值得学习!