• 深度图神经网络(GNN)论文 Learner


    part1/经典款论文

    1. KDD 2016,Node2vec 经典必读第一篇,平衡同质性和结构性

    《node2vec: Scalable Feature Learning for Networks》

     

    2. WWW2015,LINE 1阶+2阶相似度

    《Line: Large-scale information network embedding》

     

    3. KDD 2016,SDNE 多层自编码器

    《Structural deep network embedding》

     

    4. KDD 2017,metapath2vec  异构图网络

    《metapath2vec: Scalable representation learning for heterogeneous networks》

     

    5. NIPS 2013,TransE  知识图谱奠基

    《Translating Embeddings for Modeling Multi-relational Data》

     

    6. ICLR 2018,GAT  attention机制

    《Graph Attention Network》

     

    7. NIPS 2017,GraphSAGE  归纳式学习框架

    《Inductive Representation Learning on Large Graphs 》

     

    8. ICLR 2017,GCN 图神经开山之作

    《SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS》

     

    9. ICLR 2016,GGNN 门控图神经网络

    《Gated Graph Sequence Neural Networks》

     

    10. ICML 2017,MPNN  空域卷积消息传递框架

    《Neural Message Passing for Quantum Chemistry》

    part2/热门款论文 

    2020年之前

     

    11.[arXiv 2019]Revisiting Graph Neural Networks: All We Have is Low-Pass Filters

    重温图神经网络:我们只有低通滤波器

     

    [论文]

    https://arxiv.org/abs/1905.09550

     

    12.[NeurIPS 2019]Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks

    打破天花板:更强的多尺度深度图卷积网络

     

    [论文] 

    https://arxiv.org/abs/1906.02174

     

    13.[ICLR 2019] Predict then Propagate: Graph Neural Networks meet Personalized PageRank

    先预测后传播:图神经网络满足个性化 PageRank

     

    [论文] 

    https://arxiv.org/abs/1810.05997

     

    [代码] 

    https://github.com/klicperajo/ppnp

     

    14.[ICCV 2019]DeepGCNs: Can GCNs Go as Deep as CNNs?

    DeepGCN:GCN能像CNN一样深入吗?

     

    [论文] 

    https://arxiv.org/abs/1904.03751

     

    [代码(Pytorch)]

    https://github.com/lightaime/deep_gcns_torch

     

    [代码(TensorFlow)]

    https://github.com/lightaime/deep_gcns

     

    15.[ICML 2018]

    Representation Learning on Graphs with Jumping Knowledge Networks

    基于跳跃知识网络的图表征学习

     

    [论文] 

    https://arxiv.org/abs/1806.03536

     

    16.[AAAI 2018]Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning

    深入了解用于半监督学习的图卷积网络

     

    [论文] 

    https://arxiv.org/abs/1801.07606


    2020年

     

    17.[arXiv 2020]Deep Graph Neural Networks with Shallow Subgraph Samplers

    具有浅子图采样器的深图神经网络

     

    [论文] 

    https://arxiv.org/abs/2012.01380

     

    18.[arXiv 2020]Revisiting Graph Convolutional Network on Semi-Supervised Node Classification from an Optimization Perspective

    从优化的角度重新审视半监督节点分类的图卷积网络

     

    [论文] 

    https://arxiv.org/abs/2009.11469

     

    19.[arXiv 2020]

    Tackling Over-Smoothing for General Graph Convolutional Networks

    解决通用图卷积网络的过度平滑

     

    [论文] 

    https://arxiv.org/abs/2008.09864

     

    20.[arXiv 2020]DeeperGCN: All You Need to Train Deeper GCNs

    DeeperGCN:训练更深的 GCN 所需的一切

     

    [论文] 

    https://arxiv.org/abs/2006.07739

     

    [代码]

    https://github.com/lightaime/deep_gcns_torch

     

    21.[arXiv 2020]Effective Training Strategies for Deep Graph Neural Networks

    深度图神经网络的有效训练策略

     

    [论文] 

    https://arxiv.org/abs/2006.07107

     

    [代码] 

    https://github.com/miafei/NodeNorm

     

    22.[arXiv 2020]Revisiting Over-smoothing in Deep GCNs

    重新审视深度GCN中的过度平滑 

     

    [论文] 

    https://arxiv.org/abs/2003.13663

     

    23.[NeurIPS 2020]Graph Random Neural Networks for Semi-Supervised Learning on Graphs

    用于图上半监督学习的图随机神经网络

     

    [论文] 

    https://proceedings.neurips.cc/paper/2020/hash/fb4c835feb0a65cc39739320d7a51c02-Abstract.html

     

    [代码] 

    https://github.com/THUDM/GRAND

     

    24.[NeurIPS 2020]Scattering GCN: Overcoming Oversmoothness in Graph Convolutional Networks

    散射GCN:克服图卷积网络中的过度平滑

     

    [论文] 

    https://proceedings.neurips.cc/paper/2020/hash/a6b964c0bb675116a15ef1325b01ff45-Abstract.html

     

    [代码] 

    https://github.com/dms-net/scatteringGCN

     

    25.[NeurIPS 2020]Optimization and Generalization Analysis of Transduction through Gradient Boosting and Application to Multi-scale Graph Neural Networks

    Transduction through Gradient Boosting 的优化和泛化分析及其在多尺度图神经网络中的应用

     

    [论文] 

    https://proceedings.neurips.cc/paper/2020/hash/dab49080d80c724aad5ebf158d63df41-Abstract.html

     

    [代码] 

    https://github.com/delta2323/GB-GNN

     

    26.[NeurIPS 2020]Towards Deeper Graph Neural Networks with Differentiable Group Normalization

    迈向具有可微组归一化的更深图神经网络

     

    [论文] 

    https://arxiv.org/abs/2006.06972

     

    27.[ICML 2020 Workshop GRL+]A Note on Over-Smoothing for Graph Neural Networks

    关于图神经网络过度平滑的说明

     

    [论文] 

    https://arxiv.org/abs/2006.13318

     

    28.[ICML 2020]Bayesian Graph Neural Networks with Adaptive Connection Sampling

    具有自适应连接采样的贝叶斯图神经网络

     

    [论文] 

    https://arxiv.org/abs/2006.04064

     

    29.[ICML 2020]Continuous Graph Neural Networks连续图神经网络

     

    [论文] 

    https://arxiv.org/abs/1912.00967

     

    30.[ICML 2020]Simple and Deep Graph Convolutional Networks简单和深度图卷积网络

     

    [论文] 

    https://arxiv.org/abs/2007.02133

     

    [代码] 

    https://github.com/chennnM/GCNII

     

    31.[KDD 2020] Towards Deeper Graph Neural Networks走向更深的图神经网络

     

    [论文] 

    https://arxiv.org/abs/2007.09296

     

    [代码] 

    https://github.com/mengliu1998/DeeperGNN

     

    32.[ICLR 2020]Graph Neural Networks Exponentially Lose Expressive Power for Node Classification

    图神经网络对节点分类的表达能力呈指数级 下降

     

    [论文] 

    https://arxiv.org/abs/1905.10947

     

    [代码] 

    https://github.com/delta2323/gnn-asymptotics

     

    33.[ICLR 2020] DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

    DropEdge:迈向节点分类的深度图卷积网络

     

    [Paper] 

    https://openreview.net/forum?id=Hkx1qkrKPr

     

    [Code] 

    https://github.com/DropEdge/DropEdge

     

    34.[ICLR 2020] PairNorm: Tackling Oversmoothing in GNNs

    PairNorm:解决GNN中的过度平滑问题

     

    [论文]

    https://openreview.net/forum?id=rkecl1rtwB

     

    [代码]

    https://github.com/LingxiaoShawn/PairNorm

     

    35.[ICLR 2020]Measuring and Improving the Use of Graph Information in Graph Neural Networks

    测量和改进图神经网络中图信息的使用

     

    [论文] 

    https://openreview.net/forum?id=rkeIIkHKvS

     

    [代码] 

    https://github.com/yifan-h/CS-GNN

     

    36.[AAAI 2020]Measuring and Relieving the Over-smoothing Problem for Graph Neural Networks from the Topological View

    从拓扑角度测量和缓解图神经网络的过度平滑问题

     

    [论文] 

    https://arxiv.org/abs/1909.03211

     

    同学们是不是发现有些论文有代码,有些论文没有代码?学姐建议学概念读没代码的,然后再读有代码的,原因的话上周的文章有写,花几分钟看一下【学姐带你玩AI】公众号的——《图像识别深度学习研究方向没有导师带该怎么学习》

     

    part3/最新款论文


    37.[arXiv 2021]Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks

     

    同一枚硬币的两面:图卷积神经网络中的异质性和过度平滑

     

    [论文] 

    https://arxiv.org/abs/2102.06462v2

     

    38.[arXiv 2021]Graph Neural Networks Inspired by Classical Iterative Algorithms

    受经典迭代算法启发的图神经网络

     

    [论文] 

    https://arxiv.org/abs/2103.06064

     

    39.[ICML 2021]Training Graph Neural Networks with 1000 Layers

    训练 1000 层图神经网络

     

    [论文] 

    https://arxiv.org/abs/2106.07476

     

    [代码]

    https://github.com/lightaime/deep_gcns_torch

     

    40.[ICML 2021] Directional Graph Networks 方向图网络

     

    [论文] 

    https://arxiv.org/abs/2010.02863

     

    [代码] 

    https://github.com/Saro00/DGN

     

    41.[ICLR 2021]On the Bottleneck of Graph Neural Networks and its Practical Implications

    关于图神经网络的瓶颈及其实际意义

     

    [论文] 

    https://openreview.net/forum?id=i80OPhOCVH2

     

    [代码] https://github.com/tech-srl/bottleneck/

     

    42.[ICLR 2021] Adaptive Universal Generalized PageRank Graph Neural Network

     

    [论文] 

    https://openreview.net/forum?id=n6jl7fLxrP

     

    [代码]

    https://github.com/jianhao2016/GPRGNN

     

    43.[ICLR 2021]Simple Spectral Graph Convolution

    简单的谱图卷积

     

    [论文]

    https://openreview.net/forum?id=CYO5T-YjWZV 

    地址:https://github.com/mengliu1998/awesome-deep-gnn

    因上求缘,果上努力~~~~ 作者:Learner-,转载请注明原文链接:https://www.cnblogs.com/BlairGrowing/p/15704611.html

  • 相关阅读:
    套接字I/O函数write/read writev/readv send/recv sendto/recvfrom sendmsg/recvmsg
    套接字之recvmsg系统调用
    套接字之recv系统调用
    套接字之recvfrom系统调用
    套接字之sendmsg系统调用
    套接字之send系统调用
    数据类型
    简单的c程序分析
    c语言函数分析
    堆栈图
  • 原文地址:https://www.cnblogs.com/BlairGrowing/p/15704611.html
Copyright © 2020-2023  润新知